
Common–EGSE & Test Scripts
User Manual

Rik Huygen, Sara Regibo

Version 0.3, 12/02/2024

Table of Contents
Changelog . 1

Abstract . 2

TODO. 3

Documents and Acronyms . 5

Applicable documents . 5

Reference Documents . 5

Acronyms . 5

1. Introduction . 8

1.1. The User Perspectives. 8

1.2. Where do I start? . 8

1.3. Client vs. Server . 10

2. Starting the Core Services . 11

3. The Graphical User Interfaces (GUI). 13

3.1. Icons used for different GUIs . 13

3.2. The Process Manager GUI . 14

3.3. The CSL Operator GUI . 14

3.4. The Hexapod Puna GUI . 15

3.5. The HUBER Stages GUI. 19

3.6. The DPU GUI . 19

4. The Tasks GUI. 26

4.1. The Toolbar. 27

4.2. The Button Panel . 27

4.3. The Arguments Panel . 27

4.4. The Output Console. 27

4.5. Execute a Task . 28

4.6. Execute Tasks from the Jupyter QtConsole [aka REPL] . 28

5. Frequently Asked Questions (FAQ) . 32

5.1. How can I check the installed version of the CGSE and Test Scripts . 32

5.2. How do I check if all the devices have been connected properly and are active? 32

5.3. How do I check if the Storage Manager is running?. 32

5.4. How do I check if the Configuration Manager is running?. 33

5.5. How do I check if the Process Manager is running?. 33

5.6. How do I check if the Synoptics Manager is running?. 34

5.7. How do I check if the Logger is running? . 34

5.8. Where can I find my test data? . 34

Changelog
12/02/2024 — v0.3

• Removed the chapter on updating the CGSE, see the installation guide for this.

28/06/2023 — v0.2

• added a section on the DPU GUI application, see Section 3.6

• removed section on contingency GUI since those tasks are now integrated in each of the TH
GUIs using shared tasks

• added a backlink to the CGSE Documentation web site for your convenience. It’s at the top of
the HTML page.

04/05/2023 — v0.1

• Introduce Changelog, this section

• Added an explanation how to execute tasks in the Jupyter Console, see Section 4.6.

PLATO-KUL-PL-MAN-0001 KU Leuven

Changelog | 1

Abstract
This document is the user manual for the PLATO Common-EGSE and Test Script. The software is used
at CSL and the test houses at IAS, INTA and SRON. The document describes all user interactions with
the different components of the Common-EGSE system and how to run the different test scripts to
perform camera testing. The focus in this document is on how to work with the system, not on which
tasks and commands you will have to execute to perform a test. The latter is described in full detail in
the Ground Tests Commanding Manual.

This manual assumes the system has been installed and is properly configured and will therefore not
explain configuration settings nor installation procedures. Please refer to the installation manual for
this information.

The Common-EGSE framework and the Test Scripts are part of the PLATO Camera Alignment and
Testing program. The software is developed in-house in the Python 3 programming language and runs
on the Linux OS. The Common-EGSE is a distributed system with (micro-)services and controllers for
hardware devices that make up the ground test equipment. Camera testing is performed by executing
test scripts in a Python 3.8+ environment following the as-run test procedures.

KU Leuven PLATO-KUL-PL-MAN-0001

2 | Abstract

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/commanding-manual.html
installation-manual.html

TODO
What can be a good structure for this manual? I was thinking about make chapters per topics and not
so much per component. Something like:

Starting up
 Starting the core egse services
 The Process Manager
Monitoring the system
 Using device GUIs
 Using Grafana
Running test scripts
 The as-run procedure
 Using PyCharm or the test house GUIs
Inspecting the data
 Location of housekeeping and image data

• Try to go through it with a user hat on — what is a user? operator/developer/sysadmin?

◦ installation procedure: be clear about it, which installation is for the normal
users/developers/sysadmins?

▪ using modules or .bash_profile to set up the environment?

◦ Inspection of the Settings & local settings

▪ python -m egse.settings

▪ python -m egse.setup --use-cm

▪ GUI ?

◦ starting the different core services:

▪ core services: invoke start-core-egse for users & developers? Systemd for sysadmins

▪ how to check if these core services have been started and are working properly?

▪ invoke status-core-egse or status for individual core services, e.g. log_cs status

▪ cm_cs status

• What about the GUIs of the core services?

◦ log_cs has no GUI yet→ yes it does, cutelog and Textualog

◦ sm_cs has no GUI yet

◦ cm_cs has a GUI cm_ui ⟶ can not start when cm_cs is not running

• dpu_cs

◦ should be able to run as a daemon server, be able to connect/reconnect to N-FEE when
needed/requested

◦ start it in the background?

• What shall go into the UM and what in the DM?

• Installation for the user:

◦ git clone from the IvS-KULeuven repo

PLATO-KUL-PL-MAN-0001 KU Leuven

TODO | 3

◦ python setup.py develop

◦ python -m pip install -e .

• What is the focus of the user with respect to CGSE?

◦ GUIs

• Status Overview of the System

◦ How can we see what is running/active/ready…

▪ commandline

▪ GUIs

• Explain Grafana dashboards

KU Leuven PLATO-KUL-PL-MAN-0001

4 | TODO

Documents and Acronyms

Applicable documents
[AD-01] PLATO Common-EGSE Requirements Specification, PLATO-KUL-PL-RS-0001, issue 1.4,

18/03/2020

[AD-02] PLATO Common-EGSE Design Description, PLATO-KUL-PL-DD-0001, issue 1.2,
13/03/2020

[AD-03] PLATO Common-EGSE Interface Control Document, PLATO-KUL-PL-ICD-0002, issue
0.1, 19/03/2020

Reference Documents
[RD-01] PLATO Common-EGSE Installation Guide, PLATO-KUL-PL-MAN-0002

[RD-02] PLATO Common-EGSE Developer Manual, PLATO-KUL-PL-MAN-0003

[RD-03] Common-EGSE on-line Documentation https://ivs-kuleuven.github.io/plato-cgse-docs/

Acronyms

AEU Ancillary Electronics Unit

API Application Programming Interface

CAM Camera

CCD Charged-Coupled Device

CGSE Common-EGSE

CSL Centre Spatial de Liège

CSV Comma-Separated Values

COT Commercial off-the-shelf

CTI Charge Transfer Inefficiency

CTS Consent to Ship

DPU Data Processing Unit

DSI Diagnostic SpaceWire Interface

EGSE Electrical Ground Support Equipment

EOL End Of Life

FAQ Frequently Asked Questions

FEE Front End Electronics

FITS Flexible Image Transport System

PLATO-KUL-PL-MAN-0001 KU Leuven

Applicable documents | 5

https://ivs-kuleuven.github.io/plato-cgse-docs/

FPA Focal Plane Assembly/Array

GSE Ground Support Equipment

GUI Graphical User Interface

HDF5 Hierarchical Data Format version 5 (File format)

HK Housekeeping

IAS Institut d’Astrophysique Spatiale

ICD Interface Control Document

LDO Leonardo space, Italy

MGSE Mechanical Ground Support Equipment

MMI Man-Machine Interface

NCR Non-Conformance Report

NRB Non-Conformance Review Board

OBSID Observation Identifier

OGSE Optical Ground Support Equipment

OS Operating System

PDF Portable Document Format

PID Process Identifier

PLATO PLAnetary Transits and Oscillations of stars

PPID Parent Process Identifier

PLM Payload Module

PVS Procedure Variation Sheet

REPL Read-Evaluate-Print Loop, e.g. the Python interpreter prompt

RMAP Remote Memory Access Protocol

SFT Short Functional Test

SpW SpaceWire

SQL Structured Query Language

SRON Stichting Ruimte-Onderzoek Nederland

SUT System Under Test

SVM Service Module

TBC To Be Confirmed

TBD To Be Decided or To Be Defined

TBW To Be Written

TC Telecommand

TCS Thermal Control System

KU Leuven PLATO-KUL-PL-MAN-0001

6 | Documents and Acronyms

TH Test House

TM Telemetry

TOU Telescope Optical Unit

TS Test Scripts

TUI Text-based User Interface

TV Thermal Vacuum

UM User Manual

USB Universal Serial Bus

YAML YAML Ain’t Markup Language

PLATO-KUL-PL-MAN-0001 KU Leuven

Acronyms | 7

1. Introduction
The Common-EGSE consists of several components, each with specific responsibilities, that
communicate over a ZeroMQ messaging network protocol. The core functionality of the CGSE are
what we call core services:

• Configuration Manager: manages and keeps track of the configuration of the test Setup and test
equipment.

• Storage Manager: manages and stores all camera test data, i.e. CCD images, housekeeping data,
monitoring data.

• Process Manager: manages and keeps track of all running processes that are used by the test site.

• Synoptics Manager: manages the synoptic housekeeping

• Logging Manager: stores and distributes all logging messages from all components in the system

The core services are independent of the test house or test equipment that is used and are background
processes that are started by the Linux Systemd service during startup of the CGSE server. No user
interaction is need with the core services as they are managed by Systemd to restart when they crash
or are stopped. You should be confident that the core services are always running.

1.1. The User Perspectives
Although this manual is intended for operators, i.e. those users that operate the system, perform the
tests, and execute the procedures, some sections will be dedicated to administrators or developers
when there is a need in the context of the section. Please note that this user manual is complementary
to the PLATO Camera Ground Test Commanding Manual [PLATO-KUL-PL-MAN-0004] with only
minimal overlap.

1.2. Where do I start?
Since we assume the Common-EGSE and Test Scripts have been installed and configured, the starting
point for you is the Process Manager. The Process Manager (PM) provides a GUI which is started on
the egse-client and looks much like the screenshot below. The PM GUI can be started either by clicking
its icon on the desktop or from a terminal with the pm_ui command.

$ pm_ui

KU Leuven PLATO-KUL-PL-MAN-0001

8 | 1. Introduction

The Process Manager GUI represents the state of the system. It provides information about all the
processes that are needed to perform the camera tests. These processes are divided in four categories:
Core services, File Generation Processes, Non-Device Control Servers, and Device Control Servers. The
screenshot below is taken from CSL and the GUI only shows processes that are applicable to CSL. The
left column of services and processes are common for CSL and all the test houses. The right column
with Device Control Servers is test house specific and is defined by the content of the Setup. [XXXXX
explain what the Setup is and where more info can be found].

The red and green bullets in the PM GUI describe the state of the service or process. When the bullet is
green the process is running as expected, when the bullet is red the process is not running. For some
devices the bullet can become orange to indicate that the control server process is running, but the
device is not connected and can therefore not be commanded. The icons at the right of the processes
are for starting/stopping the process. Some processes can be started in simulator mode (toggle the
device icon) and some of the processes have a GUI associated that can be started from the PM GUI.
Please note that none of the core services can be started from the Process Manager GUI. Core services
are managed by the Systemd services of your Linux system and when stopped or crashed they will be
automatically restarted.

The Process Manager is fully explained in its own section The Process Manager GUI in Section 3.2.

The Process Manager presents you with a view of the state of the system and allows you to start and
stop device processes and start some GUIs to manipulate certain devices and services. The main task
for an operator to perform camera tests or alignment procedures is however to execute the test
procedure as described in the TP-0011 Google Sheet for each of the test houses and in the ambient
alignment procedure PR-0011 for CSL. These documents contain step-by-step as-run procedures that
describe all manual interactions, tasks and code execution needed to successfully perform a camera
test. Each of the rows in these procedures describe one action that needs to be successfully finished
before proceeding to the next action. As said, this can be a manual interaction with a device, a task to
be executed from a specific GUI, or a code snippet that needs to be executed in the dedicated
environment. The Python source code from the as-run procedure will be executed in a Python Console
that is used throughout the completion of the as-run procedure.

PLATO-KUL-PL-MAN-0001 KU Leuven

1.2. Where do I start? | 9

We recommend to use the Python Console provided by the PyCharm IDE. [XXXXX What about the Qt
Python Console that is available from the e.g. CSL Commanding GUI?]

1.3. Client vs. Server
Your server is a powerful machine with one or two CPUs and a few tens of cores. This was chosen
because we will have a lot of applications/services running, and they can take up different cores
without being interrupted. The server also has several disks that are used for active data storage and
data archive. The active data storage needs to be a fast SSD disk with enough space to store the data of
a few test days. The disk needs to be fast because of the image data that is received from the camera.
When the image data is not written fast enough the camera front-end electronics might generate a
buffer over-full error hereby corrupting the image data for the current exposure. The archive disk is a
normal SATA disk that can hold the test data for the whole campaign.

The client machine is a small desktop computer with preferably two large screens to place all the GUIs
and the browser for commanding and monitoring the tests.

1.3.1. What should run on the Server?

The following processes should run on the server:

• The core services (Storage Manager, Configuration Manager, Process Manager, Synoptics Manager,
and Logger), which are (re-)started automatically via systemd;

• All control servers (incl. device control servers, FDIR, Alert Manager);

• ALl file generation processes (FITS generation, FOV HK, and N-FEE HK).

These processes can be started in two different ways:

• From the PM UI (see the Sect. below), which is running on the client;

• Directly on the command line on the server.

1.3.2. What should run on the Client?

The following things should be started on the client:

• The test scripts, executed in a Python interpreter (PyCharm or the Operator GUI)

• All GUIs. These can be started from the command line or from the PM UI.



All processes (not the GUIs) that are started from the PM UI are actually started on
the server by the Process Manager. When you press a start button on the PM UI, you
send a request to the Process Manager to start the service. Remember the Process
Manager itself is running on the server.

KU Leuven PLATO-KUL-PL-MAN-0001

10 | 1. Introduction

2. Starting the Core Services
The core services of the Common-EGSE are those services that should be running all the time and
preferably on the dedicated EGSE server. In the production environment, i.e. when we are actually
running the tests in the lab, these services will be started automatically when the system boots, see the
section on the core services in systemd. During our development and when using the Common-EGSE
outside of the Camera Test environment, we can start the core services on our local machine.

When the system is properly installed, you should have an invoke command available from the
terminal. When you run it with the --list option, it will show which commands are available. Make
sure you execute this command in the CGSE project folder.

$ cd ~/git/plato-common-egse
$ invoke --list

Available tasks:

 pytests Run the tests for this project.
 start-core-egse Start the CGSE core services.
 stop-core-egse Stop the CEGSE core services.
 status-core-egse Print the status information of the CGSE core services

Some of these commands are for development purposes, but the start-core-egse and the stop-core-
egse commands can be used to start/stop the core services.

$ invoke start-core-egse
Starting log manager..
Starting storage manager..
Starting configuration manager..
Starting process manager..
Starting synoptics manager..

The servers are started in a background job.[1] To see if they are indeed started, you can run the
following in your terminal:

$ ps -ef|grep _cs
459800007 64147 1 0 2:25PM ttys001 0:00.42
/Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/rik/Git/plato-
common-egse/venv38/bin/log_cs start
459800007 64148 1 0 2:25PM ttys001 0:02.73
/Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/rik/Git/plato-
common-egse/venv38/bin/sm_cs start
459800007 64162 1 0 2:25PM ttys001 0:07.90
/Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/rik/Git/plato-
common-egse/venv38/bin/cm_cs start
459800007 64171 1 0 2:25PM ttys001 0:03.14
/Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/rik/Git/plato-
common-egse/venv38/bin/pm_cs start
459800007 64180 1 0 2:25PM ttys001 0:02.94
/Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/rik/Git/plato-
common-egse/venv38/bin/syn_cs start

Keep the core services running, they do not harm and other components of the Common-EGSE need
these services. But, if you want to stop them anyway at the end of a long working day, just use:

PLATO-KUL-PL-MAN-0001 KU Leuven

2. Starting the Core Services | 11

installation-manual.html#_setup_services_for_core_control_servers_with_systemd:

$ invoke stop-core-egse

[1] After the storage manager started, there will be a short delay of 2 seconds, this allows the service to fully start and initialise
before the other services (confman & procman) try to register to the storage.

KU Leuven PLATO-KUL-PL-MAN-0001

12 | 2. Starting the Core Services

3. The Graphical User Interfaces (GUI)

3.1. Icons used for different GUIs

Component icon Command Comment/description

Process Manager GUI pm_ui

Configuration Manager
GUI

cm_ui, setup_ui this logo is also usedfor the Setup
GUI

CSL Commanding GUI csl_ui

Contingency GUI contingency_ui

PUNA Hexapod GUI puna_ui, mech_pos_ui this logo is also used for the
Mechanical Positions GUI, used only
on position 'M' in the CSL
cleanrooms

ZONDA Hexapod GUI zonda_ui

Gimbal GUI gimbal_ui

HUBER Stages GUI smc9300_ui

OGSE GUI ogse_ui only used at CSL

TCS GUI tcs_ui only used in the test houses

AEU GUI aeu_ui

DPU GUI dpu_ui

FITS Generation GUI fitsgen_ui

FOV GUI fov_ui

Visited Positions GUI visited_positions_ui |
vis_pos_ui

Power Meter GUI pm100a_ui, cdaq9184_ui

PLATO-KUL-PL-MAN-0001 KU Leuven

3.1. Icons used for different GUIs | 13

3.2. The Process Manager GUI
This section describes the Process Manager GUI.

3.3. The CSL Operator GUI
This section briefly describes the CSL specific task GUI, the CSL Operator GUI.

The intent of the CSL Operator GUI is to simplify the work of the test operator at CSL when executing
routine tasks to perform the alignment of the PLATO Cameras. At the top of the GUI you will find the
tasks for taking a single position measurement, a circle around the optical axis, and a Hartmann
measurement. Each of these task groups has a task to do the actual commanding and a task to reduce
and analyse the data. Then, there are tasks that are grouped by components like the PUNA Hexapod,
the Camera, OGSE, etc. Each of these groups contain tasks to perform a specific action on that
component. When you hover over the tasks with your mouse, the documentation for that task will
show up in a tooltip. Alternatively, you can right click on a task and select View source… to inspect the
source for for the task.

KU Leuven PLATO-KUL-PL-MAN-0001

14 | 3. The Graphical User Interfaces (GUI)

For more information on the working of the Task GUIs, please go and read the section on the Tasks
GUI in Chapter 4.

3.4. The Hexapod Puna GUI

3.4.1. Monitoring and Commanding the Hexapod

Monitoring and commanding the hexapod can be done via a designated GUI. This is described in the
sections below.

3.4.2. Synopsis

To start the Hexapod Puna GUI, type the following command:

puna_ui --type [simulator/proxy/direct]

Arguments

The Hexapod GUI should be started with the following arguments:

--type

The hexapod implementation you want to connect to. The options are simulator, proxy, and direct.
The simulator option starts the GUI in simulation mode, which means that instead of connecting to
the real hardware, the GUI communicates with a simulator. This option is mainly used for testing
or demonstration when no hardware is available. The direct option connects the GUI directly to
the hardware controller without a control server in between. The proxy option is the default and
connects the GUI to the Puna Control Server allowing other processes to connection simultaneously
for monitoring.

PLATO-KUL-PL-MAN-0001 KU Leuven

3.4. The Hexapod Puna GUI | 15

--profile

Optional. Profile for logging.

3.4.3. Description

A screenshot of the Hexapod Puna GUI is shown below.

We discern the following components in the GUI:

• the [toolbar](#toolbar),

• the left panel, displaying the [status](#states) of the hexapod,

• the middle panel, with the [user and machine positions, and actuator lengths](#positions),

• and the right panel with the [tabs that allow settings, movements, maintenance, etc.](#tabs)

3.4.4. Toolbar

Enable/Disable Amplifier

The first button, the switch, is used to enable/disable the amplifier, i.e. to activate/de-activate the
control loop of the motors.

Homing

The second button in the toolbar, with the little house, currently does not work yet. It will be used
in the future to move the hexapod back to its homing position.

Clear Errors

The third butting in the toolbar, with the cross, currently does not work yet. It will be used in the
future to clear the errors.

Connectivity

The fourth button in the toolbar, with the plug icon, indicates whether or not a connection has
been established to the Hexapod Control Server, and can be used to re-connect to or disconnect

KU Leuven PLATO-KUL-PL-MAN-0001

16 | 3. The Graphical User Interfaces (GUI)

from it. The connection is handled with the [ZeroMQ](http://zeromq.org/) request-reply protocol.

3.4.5. States

The left panel reports on the status of the hexapod. This is done by means of a series of LEDS, where a
green LED indicates information, an orange LED indicated a warning, and a red LED indicates an
error has occurred.

The meaning of the individual reported states can be found in the Application programming interface
(API) of the Hexapod controller (MAN_SOFT_API).

3.4.6. Positions

The middle panel displays the user and machine positions, and actuator lengths.

Object [in User]

At the top the position of the Object Coordinate System is given in the User Coordinate System. The
fields X, Y, and Z denote the translation (in mm) along the x-, y-, and z-axis (of the User
Coordinate System) resp. The fields Rx, Ry, and Rz denote the rotation (in degrees) around these
axes.

Platform [in Machine]

In the middle the position of the Platform Coordinate System is given in the Machine Coordinate
System. The fields X, Y, and Z denote the translation (in mm) along the x-, y-, and z-axis (of
the Machine Coordinate System) resp. The fields Rx, Ry, and Rz denote the rotation (in degrees)
around these axes.

Actuator Lengths

At the bottom, the fields L1 to L6 display the lengths (in mm) of the corresponding actuators.
Currently the underlying method polling these lengths has not been implemented yet and all
actuator lengths are set to NaN.

3.4.7. Tabs

The tabs in the right panel allow settings, movements, maintenance, etc. The different tabs are
discussed in the subsequent sections.

Positions

The first tab, Positions, allows to command the hexapod to move to a given position in manual
mode. The type of movement, absolute or relative (user \& object), can be selected by the combo
box. Before you perform a movement, it is always a good idea to validate. Press the Validate
Movement.. button to send a check command to the Hexapod Controller and return a valid/invalid
condition.

There are two specific positions that can be moved to with the combo box at the bottom of this tab,
ZERO and RETRACTED.

Configuration

The second tab, Configuration, allows to manually change the definition of the User coordinate

PLATO-KUL-PL-MAN-0001 KU Leuven

3.4. The Hexapod Puna GUI | 17

http://zeromq.org/

system and the Object coordinate system. The User coordinate system is defined relative to the
Machine coordinate system, and the Object coordinate system is defined relative to the Platform
coordinate system. This configuration is not saved automatically and will be reset after power-on
of the controller.

The double arrow buttons in the middle are used to copy the settings from one coordinate system to
the other. Use the Fetch button to load the settings from the Hexapod controller and when you want to
apply your changes, click the Apply button.

In the lower part of this tab you will find speed settings. Rotation and translation speed of the
hexapod can be set independently. Use the Fetch button to retrieve the current speed settings from the
hexapod and click the Apply button to save your changes to the controller.

Advanced State

The third tab, Advanced State, shows the state of each of the actuators of the hexapod.

KU Leuven PLATO-KUL-PL-MAN-0001

18 | 3. The Graphical User Interfaces (GUI)

3.5. The HUBER Stages GUI

3.6. The DPU GUI
The DPU GUI is a (near) real-time viewer for the data that is received from the N-FEE. I say near real-
time because the data comes with a small delay due to the nature of the interface and the inner
working of the N-FEE. Image data e.g. can take up to four seconds to transfer from the N-FEE to the
DPU Processor just for one frame of one of the four CCDs. The housekeeping data is only sent once on
every (or right after) a synchronisation pulse, which takes 6.25s for external synchronisation
measurements. Because of this delay, you need to be aware of the current operating mode and the
synchronisation mode of your observation to estimate how long it will take before you can inspect the
data. Sometimes its quick like with internal sync measurements of a partial readout and a period of a
second versus full frame external sync measurements. Since mode changes only happen on the long
(400ms) pulses, it can take up to 25s before you can see the change in the GUI.

The DPU GUI is usually started from the Process Manager GUI by pressing the UI button associated to
the DPU Control Server. You can also start the DPU GUI from the terminal with the dpu_ui command.
The DPU GUI always runs on the client machine in any test house.

To start up the DPU GUI, at least the core services need to be running on the server. The DPU GUI gets
its information from the DPU Processor, so as long as this process is not running, you will see a
CONNECTION LOST message as the N-FEE mode in the 'Mode Parameters' panel. As soon as the DPU
Processor starts and connects to the N-FEE, the DPU GUI will receive data and update its displays.
Whenever the DPU Processor loses connection with the N-FEE (e.g. because the camera was switched
off) or the DPU Processor is terminated or crashed, the N-FEE Mode will show the CONNECTION LOST
message again.

CONNECTION LOST

PLATO-KUL-PL-MAN-0001 KU Leuven

3.5. The HUBER Stages GUI | 19

Figure 1. The DPU GUI when it is just been launched. There are no images for the CCDs, readout
parameters have a default value and the N-FEE mode says 'CONNECTION LOST'. There is no
connection with either the DPU Processor or the N-FEE.

ON MODE

Figure 2. The DPU GUI now shows 'ON_MODE' which means the DPU Processor is running and
there is a connected with the N-FEE. In 'ON_MODE' all mode and readout parameters are shown.
You can see we are in external synchronisation with a sync cycle of 25s.

KU Leuven PLATO-KUL-PL-MAN-0001

20 | 3. The Graphical User Interfaces (GUI)

Mode Parameters

The Mode parameters, which you find in the lower left of the DPU GUI, visualise the operating
mode of the N-FEE. One special item here is the DUMP mode, which is not a genuine N-FEE mode,
but a combination of settings that is defined within the CGSE as dump mode, see dump mode in the
commanding manual. In the table below the _Mode_ parameters are matched against the N-FEE
registers they visualise.


These mode parameters are updated on long pulses (400ms) only. In external
synchronisation it can therefore take up to 25s before you will see the update.

Mode Parameter Register
Parameter

Description

N-FEE Mode ccd_mode_config The main operating mode of the N-FEE. In our tests we
will navigate between ON_MODE, STANDBY_MODE, and
FULL_IMAGE_MODE.

N-FEE Cycle Time int_sync_period In external synchronisation, this value will be 6.25s. For
internal sync, the actual pulse period[1] is the
int_sync_period + 400ms.

DUMP Mode ccd_mode_config=5,
DG_en=1,
digitise_en=0

This mode is True when in full-image mode with the
dump-gate high and digitisation disabled.

Internal Sync sync_sel=1 Internal synchronisation, i.e. the N-FEE internal clock will
generate 400ms pulses every int_sync_period
milliseconds.

External Sync sync_sel=0 External synchronisation where the N-FEE receives sync
pulses from the AEU Test EGSE.

Readout Parameters

The Readout parameters visualise which parts of which CCDs will be read out by the N-FEE.


All readout parameters are updated on long pulses (400ms) only, except for the
sensor_sel parameter which is also updated on short (200ms) pulses.

Readout
Parameter

Register
Parameter

Description

Row Start v_start First row for the readout, base 0

Row End v_end Last row to readout

Num Columns h_end The number of serial registers to transfer. This number is
fixed at 2295, i.e. 25 serial pre-scan pixels, 2255 real CCD
pixels, and 15 serial over-scan pixels.

Readout Order ccd_readout_order The order in which the CCDs are read out. The parameter
consists of four values identifying the CCD to be read out
during each part of the 25s readout cycle. The order is
given from left to right.

PLATO-KUL-PL-MAN-0001 KU Leuven

3.6. The DPU GUI | 21

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/commanding-manual.html#_dump_mode

Readout
Parameter

Register
Parameter

Description

CCD Side sensor_sel Indicates which side of the CCD is read out, E-side, F-side,
or BOTH sides simultaneously.

Number of Cycles num_cycles The number of cycles is not a readout parameter of the N-
FEE. It has no equivalent register parameter. This
parameter is an internal counter of the DPU Processor
and defines how many readout cycles the N-FEE will
perform in FULL images mode. The parameter is fully
explained in the developer manual.

Status Parameters

We have currently only one status parameter, Error Flags, which visualises the possible error flags
that can occur and are reported by the N-FEE in the housekeeping packet. By default, the error
flags are shown in hexadecimal format, if you click on the value it will toggle to binary, decimal
and back to hexadecimal. When an error occurs in the N-FEE, its usually not a one-time event and
there might be a several successive errors. Because that would be difficult to visualise, once we
have an error flag, it is shown and not overwritten until you reset it by clicking the (blue,
underlined) clear.

The error flag is a bit field, so you shall decode it in order to understand which errors are
represented. The table below lists the errors and their bit values, there are currently 12 error flags.
If you hover over the non-zero value it will show a tooltip explaining the error code.

Bit Number Description

0 Window pixels fall outside CDD boundary due to a wrong x-coordinate

1 Window pixels fall outside CDD boundary due to a wrong y-coordinate

2 E-side pixel external SRAM BUFFER is Full, corrupt image will be transferred

3 F-side pixel external SRAM BUFFER is Full, corrupt image will be transferred

4 Too many overlapping windows, could not complete AWLA[2], some pixels touching
the window will be dropped

5 SRAM EDAC Correctable

6 SRAM EDAC Uncorrectable

7 Stat_Link_disconnect_Error

8 Stat_Link_Escape_Error

9 Stat_Link_Credit_Error

10 Stat_Link_Parity_Error

11 pll lock error. Loss of pll lock, N-FEE has a synchronisation issue

The CCD images are all oriented with the readout register at the bottom. The image that is visualised is
a composition of —from left to right— the serial pre-scan pixels (25), the actual CCD pixels (2255), the

KU Leuven PLATO-KUL-PL-MAN-0001

22 | 3. The Graphical User Interfaces (GUI)

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/developer-manual.html#_dpu_control_server_and_dpu_processor

serial overscan pixels (15), and on top of these the parallel overscan pixels (30). The red lines in the
displays indicate the boundaries of the CCD pixels.

The four CCD image displays are build from a pyqtgraph widget. This means you have all functionality
available for interactive inspection of the image. Please refer to the PyQtGraph documentation to
learn the details. The most used mouse interactions are:

• zoom in and out with the mouse wheel or a two-finger swipe on your trackpad,

• pan with click and drag

• reset the zooming level to the actual size by pressing the small 'A' symbols in the lower-left corner
of the image (only visible when zoomed or panned)

In Figure 3, we show the zoom window for CCD1. The image display is the same for the other CCDs
and for the main DPU GUI window with all four CCDs. We see both sides of the CCD displayed next to
each other in independent (pyqtgraph) widgets. Each side has the image data on the left and the
histogram on the right. The histogram can be manipulated using the standard PyQtGraph interactions
in order to change the color mapping or zoom and select the histogram range.

The right-side of the CCD is zoomed and we clearly see that there are 25 serial pre-scan pixels. The big
cross is part of the simulated data in order to identify the orientation of the image (a debugging tool).
In this right-side view you also see the small 'A' in the lower-left corner that you can use to bring the
visualization back to the actual full size. Above each of the CCD sides are coordinates that represent
the pixel position and the flux for that pixel where the mouse is pointed.

PLATO-KUL-PL-MAN-0001 KU Leuven

3.6. The DPU GUI | 23

https://www.pyqtgraph.org
https://pyqtgraph.readthedocs.io/en/latest/index.html

Figure 3. Zoomed window for CCD1 with simulated image data.

The two icons in the upper-right corner of the display allow you to (1) select and zoom to the brightest
pixels in the display, and to (2) clear the image data. In de main window there is a third button per
CCD that will open de image data in a separate zoom window like in Figure 3.

Figure 4. Associated with each CCD widget, at the top-right, there are three buttons that allow to (1)
zoom to the brightest pixel of the CCD image, (2) clear the CCD display, and (3) show the CCD image in a
separate window.

There is no functionality to save CCD images because all data is automatically saved in HDF5 files by
the DPU Processor. The HDF5 file is fully explained in the Interface Control Document (ICD).

KU Leuven PLATO-KUL-PL-MAN-0001

24 | 3. The Graphical User Interfaces (GUI)

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/icd.html#hdf5-format

Describe the HK display…

Describe the Register Map display tab… when is this updated? Can we freeze it? Can we filter?

What improvements could we envisage for the DPU GUI?

• Simple one-button command to the N-FEE

• Navigation to previous frames?

• SpaceWire diagnostics?

[1] The int_sync_period doesn’t represent the full time period between two pulses, apparently the full time period between two
internal sync pulses is int_sync_period + 400ms. See the Commanding Manual XXXXX (link) for more details.

[2] AWLA = Active Window List Array

PLATO-KUL-PL-MAN-0001 KU Leuven

3.6. The DPU GUI | 25

4. The Tasks GUI
The Tasks GUI is a collective noun for all the task GUIs that we use in our CGSE and TS environment.
All these GUIs have the same principle user interface since they are all based on the same Python
package that generates the Graphical interface and executes the code. That package is gui-executor
which is under development at the institute of astronomy at KU Leuven. The gui-executor package is
open-source and can be installed from PyPI with pip:

python3 -m pip install gui-executor

This chapter explains how the gui-executor and therefore the Task GUIs can be used to ease your
work in executing scripts and procedures. This chapter is focussed on the user of the GUI, if you are a
developer and need coding information on the gui-executor, please refer to the Developer Manual
tasks-gui or directly to the on-line documentation of the gui-executor.

Table 1. A few examples of the Task GUI

There are four distinct parts in the Task GUI:

• A toolbar for managing the Python kernel and opening a Python Console window.

• A panel containing all the tasks, grouped by type or component, with different TABs for Tests,
Configuration, Camera etc.

• An arguments panel that is shown when a task is selected (in the figure below that is ToDUMP mode)
and which allows you to enter parameters that will be passed into the task. You can also specify
here how you want the task to be run.

• An output panel where the output of the task will appear.

We will explain all of these panels in more detail next.

KU Leuven PLATO-KUL-PL-MAN-0001

26 | 4. The Tasks GUI

../developer-manual.html#tasks-gui
https://ivs-kuleuven.github.io/gui-executor/

4.1. The Toolbar
The toolbar is dedicated to the Python kernel that is used to execute the tasks. The left-most button can
be used to restart the kernel. Do this when you want to start a fresh new Python Interpreter or when
you need to change the kernel. The second button on the toolbar is used to open a Python Console that
is connected to the currently running kernel. Pressing this button will open a window with a prompt
where you can enter or paste Python code to be executed. Here you can also find back the code that
was executed by pressing one of the buttons.

In the screenshot on the left, I have entered two
lines of Python code, but you see already that the
line number starts with [4:]. That means I have
already executed three blocks or lines of code.
Some of that code was executed by the
application right after starting the kernel, other
code was generated and executed by pressing a
button.

You might ask why you would need to change the kernel? Normally, you don’t need to do this and you
can simply execute code from the Python prompt or by pressing buttons and running tasks. But it
might happen that the kernel crashed or hangs due to a bug in the executed code. At that point you
would need to restart the kernel. A second reason is when you want to use another kernel from the
drop-down menu at the right end of the toolbar. By default, the plato-test-scripts kernel will be started
if it is available, otherwise the fall-back kernel is python3. Please note that only one kernel can be
managed from this application, and you can also open only one Python Console window.

4.2. The Button Panel
All tasks are available in the Button Panel. The tasks are arranged in groups and in each group in
columns of four tasks.

4.3. The Arguments Panel
When you press a task button an associated arguments panel will appear below the button panel.
Before pressing the Run button you can provide input for all the parameters of the task. Most of the
arguments will have a simple builtin type like int, float or bool, but more complex argument types are
possible and for some of those a special icon will appear on the right side to

4.4. The Output Console
TBW

PLATO-KUL-PL-MAN-0001 KU Leuven

4.1. The Toolbar | 27

4.5. Execute a Task
XXXXX: update text below! As an example, when you press a task button, it will change color to
indicate this task has been selected (see screenshot above) and an arguments panel will appear in the
middle of the GUI. The set_trp1 task expects one parameter (temperature) for which no default was
provided. The expected input is a float. When you press the Run button, the task will be executed in the
kernel. All tasks are by default executed in the kernel. You will sometimes see that a task will execute
in the GUI App or as a script, don’t use those options yourself unless you know what you are doing.

4.6. Execute Tasks from the Jupyter QtConsole [aka
REPL]
You might want to run tasks from the Jupyter QtConsole or any other REPL that you use. Since the
tasks in the GUI as just like any other function, you can import the task and run the function from the
Python interpreter. The only thing you need to know is where the tasks are defined, from which
module they should be imported. In our PLATO project, all tasks are defined in the plato-test-scripts
repository and they live inside the camtest.tasks package. It depends on the TAB and the location in
that TAB where your tasks is defined. As an illustration, we start from the CSL Operator GUI
(screenshot below) and select the Camera TAB and the Camera Switch ON button. This will open the
arguments panel, and we see this task takes one argument, the hk_frequency. We would like to execute
this task in the REPL instead of pressing the 'Run' button.

The example below shows how this is done for the Camera Switch ON and Switch OFF tasks. We
import the tasks from camtest.tasks.shared.camera.camera in line [4]. In line [5] we print the
documentation associated with this task and we see what the task does and what the parameters are
(and their defaults).

KU Leuven PLATO-KUL-PL-MAN-0001

28 | 4. The Tasks GUI

In [4]: from camtest.tasks.shared.camera.camera import switch_on_camera, switch_off_camera

In [5]: switch_on_camera?
Signature: switch_on_camera(hk_frequency: float = 4.0)
Docstring:
Camera switch-on procedure.

This procedure entails the following steps:
 - Power on the N-cam + enable the sync signals, with the following parameters:
 - image cycle time: 25s
 - nominal heater clock: on
 - redundant heater : off
 - Set N-FEE FPGA defaults;
 - Go to STAND-BY mode;
 - Go to DUMP mode (external sync);
 - Acquire & dump (this finishes in DUMP mode (external sync)).

Prerequisites (to be included in the procedure):
 - Core services running;
 - DPU Control Server running;
 - All AEU Control Servers running;
 - N-FEE HK process running;
 - FITS generation process running.

The following values are hard-coded for the acquire & dump:
 - num_cycles (5): Number images to acquire. If zero, images will continue to be acquired until the FEE is set to
 STANDBY or DUMP mode again
 - row_start (0) : First row to read out
 - row_end (4509) : Last row to read out (inclusive)
 - rows_final_dump (0): Number of rows for the clear-out after the readout
 - ccd_order ([1, 2, 3, 4]): Array of four integers, indicating in which order the CCDs should be read
 - ccd_side (BOTH): CCD side for which to acquire data

After each step, the user is prompted to check whether the system is in the correct state, so he/she
can decide to continue with the camera start-up procedure or to interrupt it.

Args:
 - hk_frequency: Frequency at which to acquire AEU (cRIO + PSUs) during the acquire & dump.
File: ~/git/plato-test-scripts/src/camtest/tasks/shared/camera/camera.py
Type: function

Running the tasks is as simple as executing the function. While this specific task would open dialogs
asking for confirmation when the task is run from the button, in this case, the input is requested in
the REPL and you type your answer at the prompt.

In [6]: switch_on_camera()
2023-04-27 08:53:47,031: IPython: INFO: 358:camtest.core.exec :Observation started with
obsid=CSL1_00067_00066
Setting the N-FEE FPGA defaults
 N-FEE FPGA defaults
┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━
━┓
┃ Register ┃ Sub-register ┃ Old value ┃ New value ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━
━┩
│ reg_5_config │ sensor_sel │ 3 │ 1 │
│ reg_18_config │ ccd1_vrd_config │ 3685 │ 3709 │
│ reg_18_config │ ccd2_vrd_config │ 101 │ 127 │
│ reg_18_config │ ccd_vod_config │ 3823 │ 3860 │
│ reg_19_config │ ccd3_vrd_config │ 3685 │ 3711 │
│ reg_19_config │ ccd4_vrd_config │ 3685 │ 3709 │
│ reg_19_config │ ccd_vgd_config │ 14 │ 2 │
│ reg_20_config │ ccd_vgd_config │ 207 │ 206 │
│ reg_20_config │ ccd_vog_config │ 410 │ 412 │

PLATO-KUL-PL-MAN-0001 KU Leuven

4.6. Execute Tasks from the Jupyter QtConsole [aka REPL] | 29

│ reg_21_config │ clear_error_flag │ 1 │ 0 │
│ reg_21_config │ cont_cdsclp_on │ 0 │ 1 │
│ reg_21_config │ trk_hld_hi │ 4 │ 5 │
│ reg_21_config │ trk_hld_lo │ 14 │ 15 │
│ reg_22_config │ cdsclp_hi │ 0 │ 4 │
│ reg_22_config │ cdsclp_lo │ 9 │ 10 │
│ reg_22_config │ r_cfg1 │ 7 │ 9 │
│ reg_22_config │ r_cfg2 │ 11 │ 14 │
│ reg_22_config │ rowclp_hi │ 0 │ 2 │
│ reg_22_config │ rowclp_lo │ 2 │ 4 │
└───────────────┴──────────────────┴───────────┴──────────
─┘

The changes in N-FEE FPGA parameters were applied correctly.
Check the printed changes in the N-FEE FPGA parameters in the table in the Python Console.
Continue with the camera switch-on procedure [Y/n] ?
 In the next step, we will go to STAND-BY mode.Y
Going to STAND-BY mode
Check in the DPU UI that you are in STAND-BY mode.
Continue with the camera switch-on procedure [Y/n] ?
 In the next step, we will go to DUMP mode.Y
Going to DUMP mode
Check in the DPU UI that you are in DUMP mode.
Continue with the camera switch-on procedure [Y/n] ?
 In the next step, we will execute an acquire-and-dump observation.Y
Resetting the AEU HK frequency (cRIO + PSU)

In [7]:

Switching OFF the camera is equally simple:

In [7]: switch_off_camera()
2023-04-27 09:03:16,800: IPython: INFO: 358:camtest.core.exec :Observation started with
obsid=CSL1_00067_00067
Going to STAND-BY mode
Check in the DPU UI that you are in STAND-BY mode.
Continue with the camera switch-off procedure [Y/n] ?
 In the next step, we will go to ON mode.Y
Going to ON mode
Check in the DPU UI that you are in ON mode.
Continue with the camera switch-off procedure [Y/n] ?
 In the next step, we will switch off the N-AEU.Y
2023-04-27 09:04:01,984: IPython: INFO: 1513:camtest.commanding.aeu:Disable the N-CAM sync pulses
2023-04-27 09:04:02,031: IPython: INFO: 178:camtest.commanding.aeu:Confirming the N-CAM status
2023-04-27 09:04:02,063: IPython: INFO: 194:camtest.commanding.aeu:Operating mode: 3
2023-04-27 09:04:02,065: IPython: INFO: 198:camtest.commanding.aeu:Output status of PSU1: 1
2023-04-27 09:04:02,066: IPython: INFO: 202:camtest.commanding.aeu:Output status of PSU2: 1
2023-04-27 09:04:02,067: IPython: INFO: 206:camtest.commanding.aeu:Output status of PSU3: 1
2023-04-27 09:04:02,069: IPython: INFO: 210:camtest.commanding.aeu:Output status of PSU4: 1
2023-04-27 09:04:02,070: IPython: INFO: 214:camtest.commanding.aeu:Output status of PSU5: 1
2023-04-27 09:04:02,071: IPython: INFO: 218:camtest.commanding.aeu:Output status of PSU6: 1
2023-04-27 09:04:02,072: IPython: INFO: 222:camtest.commanding.aeu:Secondary power lines of N-CAM: 1
2023-04-27 09:04:02,073: IPython: INFO: 226:camtest.commanding.aeu:Measured voltages in N-CAM:
(34.7, 16.05, 6.65, 6.65, -6.65, 4.55)
2023-04-27 09:04:02,074: IPython: INFO: 230:camtest.commanding.aeu:Measured currents in N-CAM:
(0.105, 0.208, 0.19, 0.058, -0.224, 0.553)
2023-04-27 09:04:02,075: IPython: INFO: 234:camtest.commanding.aeu:Status of the N-CAM clocks:
(<IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>)
2023-04-27 09:04:02,077: IPython: INFO: 238:camtest.commanding.aeu:Status of the SVM clocks:
(<IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>)
2023-04-27 09:04:02,078: IPython: INFO: 1542:camtest.commanding.aeu:Output status for N-CAM clocks:
(<IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>)
2023-04-27 09:04:02,081: IPython: INFO: 1556:camtest.commanding.aeu:Output status for SVM clocks:
(<IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>)
2023-04-27 09:04:02,087: IPython: INFO: 813:camtest.commanding.aeu:Switch off the N-CAM

KU Leuven PLATO-KUL-PL-MAN-0001

30 | 4. The Tasks GUI

2023-04-27 09:04:02,098: IPython: INFO: 178:camtest.commanding.aeu:Confirming the N-CAM status
2023-04-27 09:04:02,129: IPython: INFO: 194:camtest.commanding.aeu:Operating mode: 3
2023-04-27 09:04:02,130: IPython: INFO: 198:camtest.commanding.aeu:Output status of PSU1: 1
2023-04-27 09:04:02,131: IPython: INFO: 202:camtest.commanding.aeu:Output status of PSU2: 1
2023-04-27 09:04:02,132: IPython: INFO: 206:camtest.commanding.aeu:Output status of PSU3: 1
2023-04-27 09:04:02,133: IPython: INFO: 210:camtest.commanding.aeu:Output status of PSU4: 1
2023-04-27 09:04:02,134: IPython: INFO: 214:camtest.commanding.aeu:Output status of PSU5: 1
2023-04-27 09:04:02,135: IPython: INFO: 218:camtest.commanding.aeu:Output status of PSU6: 1
2023-04-27 09:04:02,136: IPython: INFO: 222:camtest.commanding.aeu:Secondary power lines of N-CAM: 1
2023-04-27 09:04:02,137: IPython: INFO: 226:camtest.commanding.aeu:Measured voltages in N-CAM:
(34.7, 16.05, 6.65, 6.65, -6.65, 4.55)
2023-04-27 09:04:02,138: IPython: INFO: 230:camtest.commanding.aeu:Measured currents in N-CAM:
(0.105, 0.208, 0.19, 0.058, -0.224, 0.553)
2023-04-27 09:04:02,139: IPython: INFO: 234:camtest.commanding.aeu:Status of the N-CAM clocks:
(<IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>)
2023-04-27 09:04:02,141: IPython: INFO: 238:camtest.commanding.aeu:Status of the SVM clocks:
(<IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>, <IntSwitch.OFF: 0>)
2023-04-27 09:04:02,143: IPython: INFO: 845:camtest.commanding.aeu:Secondary power lines of N-CAM: 0
2023-04-27 09:04:02,145: IPython: INFO: 853:camtest.commanding.aeu:Measured voltages in N-CAM: (0,
0, 0, 0, 0, 0)
2023-04-27 09:04:02,146: IPython: INFO: 857:camtest.commanding.aeu:Measured currents in N-CAM: (0,
0, 0, 0, 0, 0)
2023-04-27 09:04:02,150: IPython: INFO: 871:camtest.commanding.aeu:Output status for V_CCD (PSU1): 0
2023-04-27 09:04:02,154: IPython: INFO: 871:camtest.commanding.aeu:Output status for V_CLK (PSU2): 0
2023-04-27 09:04:02,158: IPython: INFO: 871:camtest.commanding.aeu:Output status for V_AN1 (PSU3): 0
2023-04-27 09:04:02,163: IPython: INFO: 871:camtest.commanding.aeu:Output status for V_AN2 (PSU4): 0
2023-04-27 09:04:02,168: IPython: INFO: 871:camtest.commanding.aeu:Output status for V_AN3 (PSU5): 0
2023-04-27 09:04:02,173: IPython: INFO: 871:camtest.commanding.aeu:Output status for V_DIG (PSU6): 0
2023-04-27 09:04:02,175: IPython: INFO: 881:camtest.commanding.aeu:Operating mode: 0 (STANDBY)
Switching off the N-AEU

In [8]:

PLATO-KUL-PL-MAN-0001 KU Leuven

4.6. Execute Tasks from the Jupyter QtConsole [aka REPL] | 31

5. Frequently Asked Questions (FAQ)

5.1. How can I check the installed version of the CGSE
and Test Scripts
Use the following commands in a terminal:

$ python3 -m egse.version
CGSE version in Settings: 2023.23.0+CGSE
CGSE git version = 2023.23.0+CGSE-9-g05a2f153
CGSE installed version = 2023.23.0+cgse

$ python3 -m camtest.version
CAMTEST version in Settings: 2023.23.0+TS
CAMTEST git version = 2023.23.0+TS-0-gadedfd8

NOTE

The Common-EGSE is installed on both the egse-server and the egse-client and shall have the same
version.

See the section [Update the Common-EGSE Software] on how to get the latest version installed in your
environment.

5.2. How do I check if all the devices have been
connected properly and are active?
TBW

Process Manager GUI or from the terminal…

5.3. How do I check if the Storage Manager is
running?
You can check this in a terminal with the following command:

$ sm_cs status
Storage Manager:
 Status: active
 Hostname: 172.20.10.3
 Monitoring port: 6101
 Commanding port: 6100
 Service port: 6102
 Storage location: /Users/rik/data/CSL/
 Registrations: ['obsid', 'CM', 'PM', 'SYN-HK', 'SYN']

If you need more information e.g. to debug which files are being used to save the observation data,

KU Leuven PLATO-KUL-PL-MAN-0001

32 | 5. Frequently Asked Questions (FAQ)

add the --full option to the above command:

$ sm_cs status --full
Storage Manager:
 Status: active
 Hostname: 172.20.10.3
 Monitoring port: 6101
 Commanding port: 6100
 Service port: 6102
 Storage location: /Users/rik/data/CSL/
 Registrations: ['obsid', 'CM', 'PM', 'SYN-HK', 'SYN']
Filenames for all registered items:
 obsid -> [PosixPath('/Users/rik/data/CSL/obsid-table.txt')]
 CM -> [PosixPath('/Users/rik/data/CSL/daily/20220530/20220530_CSL_CM.csv')]
 PM -> [PosixPath('/Users/rik/data/CSL/daily/20220530/20220530_CSL_PM.csv')]
 SYN-HK -> [PosixPath('/Users/rik/data/CSL/daily/20220530/20220530_CSL_SYN-HK.csv')]
 SYN -> [PosixPath('/Users/rik/data/CSL/daily/20220530/20220530_CSL_SYN.csv')]
No observation is registered.
Total disk space: 931.547 GiB
Used disk space: 887.819 GiB (95.31%)
Free disk space: 43.728 GiB (4.69%)

More information can be found in the

5.4. How do I check if the Configuration Manager is
running?
You can check this in a terminal with the following command:

$ cm_cs status
Configuration manager:
 Status: active
 Site ID: IAS
 No observation running
 Setup loaded: 00077
 Hostname: 192.168.0.251
 Monitoring port: 6001
 Commanding port: 6000
 Service port: 6002

5.5. How do I check if the Process Manager is
running?
You can check this in a terminal with the following command:

$ pm_cs status
Process Manager:
 Status: active
 Hostname: 192.168.0.251
 Monitoring port: 6201
 Commanding port: 6200
 Service port: 6202

PLATO-KUL-PL-MAN-0001 KU Leuven

5.4. How do I check if the Configuration Manager is running? | 33

5.6. How do I check if the Synoptics Manager is
running?
You can check this in a terminal with the following command:

$ syn_cs status
Synoptics Manager:
 Status: active
 Hostname: 192.168.0.251
 Monitoring port: 6205
 Commanding port: 6204
 Service port: 6206

5.7. How do I check if the Logger is running?
You can check this in a terminal with the following command:

$ log_cs status

5.8. Where can I find my test data?
TBW

KU Leuven PLATO-KUL-PL-MAN-0001

34 | 5. Frequently Asked Questions (FAQ)

	Common–EGSE & Test Scripts: User Manual
	Table of Contents
	Changelog
	Abstract
	TODO
	Documents and Acronyms
	Applicable documents
	Reference Documents
	Acronyms

	1. Introduction
	1.1. The User Perspectives
	1.2. Where do I start?
	1.3. Client vs. Server

	2. Starting the Core Services
	3. The Graphical User Interfaces (GUI)
	3.1. Icons used for different GUIs
	3.2. The Process Manager GUI
	3.3. The CSL Operator GUI
	3.4. The Hexapod Puna GUI
	3.5. The HUBER Stages GUI
	3.6. The DPU GUI

	4. The Tasks GUI
	4.1. The Toolbar
	4.2. The Button Panel
	4.3. The Arguments Panel
	4.4. The Output Console
	4.5. Execute a Task
	4.6. Execute Tasks from the Jupyter QtConsole [aka REPL]

	5. Frequently Asked Questions (FAQ)
	5.1. How can I check the installed version of the CGSE and Test Scripts
	5.2. How do I check if all the devices have been connected properly and are active?
	5.3. How do I check if the Storage Manager is running?
	5.4. How do I check if the Configuration Manager is running?
	5.5. How do I check if the Process Manager is running?
	5.6. How do I check if the Synoptics Manager is running?
	5.7. How do I check if the Logger is running?
	5.8. Where can I find my test data?

