Interface Control Document

Rik Huygen

Version 0.7, 29/09/2024

Table of Contents

Changelog

Colophon

Conventions used in this Book

1.
2.
3.

TODO

Introduction

Software Interfaces

3.1. The Storage Data Interface

. Data Format

4.1. The format of the FITS files

4.2. The format of the HDF5 files

4.3. Inspecting HDFS files with the toolset from the CGSE
4.4. The Telemetry (TM) Dictionary

4.5. The format of the CSV data files

. The OBSID Table file
. List of Files

N 3 oY U W

10
10
10
29
33
36
39
40

PLATO-KUL-PL-ICD-0002

NCw/

KU Leuven

Changelog

29/09/2024 — v0.7

» Updated the section on the format version of the HDF?5 files, see Section 4.2.1.

11/09/2024 — v0.6
* Added a description on the HDFS5 files for the F-FEE, see Section 4.2.3.

07/06/2024 — v0.5

* Added a section on te HDF5 file format version, see Section 4.2.1.

29/03/2024 — v0.4

* Updated the section on HDFS5 files for format version 2.6, see Section 4.2.

18/06/2023 — v0.3
* Added description of the N-FEE-HK CSV file, see Section 4.5.2

* Added a table with a description of all files that are used by the CGSE and test scripts, see
Chapter 6

* Added a description of the obsid-table.txt, see Chapter 5

* added a backlink to the CGSE Documentation web site for your convenience. It’s at the top of
the HTML page.

04/05/2023 — v0.2

* Updated the HDF5 format version information, see [format-version].

21/02/2023 — v0.1

* Introduce Changelog, this section
* Added section on the format of the HDF5 files, see Section 4.2

* Added section on inspecting an HDFS5 file, see Section 4.3

Changelog | 1

KU Leuven

NCw/

PLATO-KUL-PL-ICD-0002

Colophon

Copyright © 2022, 2023 by the KU Leuven PLATO CGSE Team
1% Edition — February 2023

This manual is written in PyCharm using the AsciiDoc plugin. The PDF Book version is processed with
asciidoctor-pdf.

The manual is available as HTML from ivs-kuleuven/github.io. The HTML pages are generated with
Hugo which is an OSS static web-pages generator. From this site, you can also download the PDF
books.

The source code is available in a GitHub repository at ivs-kuleuven/plato-cgse-doc.

When you find an error or inconsistency or you have some improvements to the text, feel free to raise
an issue or create a pull request. Any contribution is greatly appreciated and will be mentioned in the
acknowledgement section.

2 | Colophon

http://ivs-kuleuven.github.io/plato-cgse-doc
https://github.com/ivs-kuleuven/plato-cgse-doc

N

PLATO-KUL-PL-ICD-0002 KU Leuven

Conventions used in this Book

We try to be consistent with the following typographical conventions:

Italic

Indicates a new term or ...

Constant width

Used for code listings, as well as within paragraphs to refer to program elements like variable and
function names, data type, environment variables (ALL_CAPS), statements and keywords.

Constant width between angle brackets <text>

Indicates text that should be replaced with user-supplied values or by values determined by
context. The brackets should thereby be omitted.

When you see a § ‘- in code listings, this is a command you need to execute in a terminal (omitting
the dollar sign itself). When you see >>> - in code listings, that is a Python expression that you need
to execute in a Python REPL (here omitting the three brackets).

Setup versus setup

I make a distinction between Setup (with a capital S) and setup (with a small s). The Setup is used
when I talk about the object as defined in a Python environment, i.e. the entity itself that contains
all the definitions, configuration and calibration parameters of the equipment that make up the
complete test setup (notice the small letter 's' here).

(sometimes you may find setup in the document which really should be 'set up' with a space)

Using TABs

Some of the manuals use TABs in their HTML version. Below, you can find an example of tabbed
information. You can select between FM and EM info and you should see the text change with the
TAB.

This feature is only available in the HTML version of the documents. If you are
o looking at the PDF version of the document, the TABs are shown in a frame where
all TABs are presented successively.

M

In this TAB we present FM specific information.

EM

In this TAB we present EM specific information.

Using Collapse

Sometimes, information we need to display is too long and will make the document hard to read.
This happens mostly with listings or terminal output and we will make that information
collapsible. By default, the info will be collapsed, press the small triangle before the title (or the

Conventions used in this Book | 3

KU Leuven PLATO-KUL-PL-ICD-0002

ER

title itself) to expand it.
o In the PDF document, all collapsible sections will be expanded.

v A collapsible listing

plato-data@strawberry:/data/CSL1/0bs/@1151_CSL1_chimay$ 1s -1
total 815628

-rw-r--r-- 1 plato-data plato-data 7961 Jun 20 10:38 01151_CSL1_chimay_AEU-AWG1_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 9306 Jun 20 10:38 01151_CSL1_chimay_AEU-AWG2_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 309375 Jun 20 10:38 01151_CSL1_chimay_AEU-CRI0_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42950 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU1_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 43239 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU2_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42175 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU3_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42327 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU4_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42242 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU5_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42269 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU6_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 67149 Jun 20 10:38 01151_CSL1_chimay_CM_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 20051 Jun 20 10:38 01151_CSL1_chimay_DAQ6510_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 105 Jun 20 10:38 01151_CSL1_chimay_DAS-DAQ6510_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19721 Jun 20 10:38 01151_CSL1_chimay_DPU_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 22833 Jun 20 10:38 01151_CSL1_chimay_FOV_20230620_095819.csv
-rw-rw-r-- 1 plato-data plato-data 833754240 Jun 20 10:34 01151_CSL1_chimay_N-FEE_CCD_00001_20230620_cube.fits
-rw-r--r-- 1 plato-data plato-data 292859 Jun 20 10:38 01151_CSL1_chimay_N-FEE-HK_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 8877 Jun 20 10:38 01151_CSL1_chimay_0GSE_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19841 Jun 20 10:38 01151_CSL1_chimay_PM_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 188419 Jun 20 10:38 01151_CSL1_chimay_PUNA_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 7662 Jun 20 10:38 01151_CSL1_chimay_SMC9300_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19781 Jun 20 10:38 01151_CSL1_chimay_SYN_20230620_095819.csv

-rw-r--r-- 1 plato-data plato-data 147569 Jun 20 10:38 01151_CSL1_chimay_SYN-HK_20230620_095819.csv
plato-data@strawberry:/data/CSL1/0bs/@1151_CSL1_chimay$

4 | Conventions used in this Book

PLATO-KUL-PL-ICD-0002

KU Leuven

NCw/

1. TODO

O Describe the format of the FITS files containing CCD data
@ Describe the format of the HDFS5 files containing SpaceWire data from the N-FEE

O Describe the interface to the Storage, i.e. the expected keys for the dictionaries that are passed like
prep and item...

1.TODO | 5

KU Leuven

ava\

NCw/

PLATO-KUL-PL-ICD-0002

2. Introduction

This document describes the software and hardware interfaces for the PLATO Common-EGSE, which
is used at CSL and the test houses at IAS, INTA and SRON.

This ICD defines all the connections between the components in the instrument test setup that
interface with the Common-EGSE. It defines these interface in terms of hardware, i.e. cables,
connectors, electrical properties, and in terms of software, i.e. communication protocols, message
buffers, timing, data formats etc.

6 | 2. Introduction

PLATO-KUL-PL-ICD-0002

NCw/

KU Leuven

3. Software Interfaces

3.1. The Storage Data Interface
The Storage Manager ... TBW

Table 1. Top-level keys that are mandatory or optional in the 'item' argument of the following Storage
methods.

key register unregister new_registr read save get_filenam
ation es

origin required required required required required required

prep required required required required required

persistence_ required required

class

persistence. created’ used’ used’ used’ used’

objects

persigtence_ optional

count

data required

filename* optional

select required

' — The persistence_objects key is created during registration and used internally to manage all the
persistent objects that are associated to the item.

? — This key which was created during registration is used to perform an action on the persistent
objects associated with this item.

® — When the persistent_count is provided in the item, the file is treated specially. The file will not be
cloned when an observation is started, nor will it be cycled when a new day is started. Basically, the
file is created once and not cloned, cycled or closed. An example is the obsid-table.txt which is used
by the configuration manager.

* — When the filename key is present, the file will be created with the given name in the folder
provided by the FILE_STORAGE_LOCATION field for the Storage manager in the Settings. By default, this is
the $PLATO_DATA_STORAGE_LOCATION environment variable, but that can be changed in the local settings
(which is not preferred!).

In the following example you can see how to check the registrations on the Storage Manager and
which persistence_objects are associated with each of the registered items. This particular example is
during an observation run and therefore each registered item has a persistent object in the daily
folder, and one in the obs folder for the observation 299. It is also clear that the obsid-table.txt is only
in the top-level data folder because it was created with the persistence_count key.

[plato-data@plato-arrakis 20220701]% sm_cs status --full
Storage Manager:
Status: active

3.1. The Storage Data Interface | 7

KU Leuven PLATO-KUL-PL-ICD-0002

Hostname: 129.175.66.182
Monitoring port: 6101
Commanding port: 6100
Service port: 6102
Storage location: /data/IAS
Registrations: ['SYN-HK', 'SYN', 'obsid', 'CM', 'PM', 'CDAQ9184', 'FOV', 'DAQ651@', "ZONDA',
'KSc1e1', 'PTC10', 'EQ99', 'TCS', 'TCS-HK', 'DAS-PTC10', 'AEU-CRIO', "AEU-PSU1', '"AEU-PSU2',
"AEU-PSU3", 'AEU-PSU4', 'AEU-PSU5', 'AEU-PSU6', 'AEU-AWGT', 'AEU-AWG2', 'N-FEE_SPW', 'DPU',
"N-FEE-HK", 'Fw8SMC4']
Filenames for all registered items:
SYN-HK -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_SYN-HK.csv'),
PosixPath('/data/IAS/obs/00299 IAS/00299 _IAS_SYN-HK_20220701_132613.csv')]

SYN -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_SYN.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_SYN_20220701_132613.csv')]

obsid -> [PosixPath('/data/IAS/obsid-table.txt")]

CM -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_CM.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_CM_20220701_132613.csv')]

PM -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_PM.csv'),

PosixPath('/data/IAS/obs/00299 _IAS/00299_IAS_PM_20220701_132613.csv')]

CDAQ9184 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_CDAQ9184.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_CDAQ9184_20220701_132613.csv")]

FOV -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_FOV.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299 _IAS_FOV_20220701_132613.csv')]

DAQ6510 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_DAQ6510.csv'),
PosixPath('/data/IAS/obs/00299 _IAS/00299_IAS_DAQ6510_20220701_132613.csv')]

ZONDA -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_ZONDA.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299 _IAS_ZONDA_20220701_132613.csv')]

Ksc1e1 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_KSC101.csv"'),
PosixPath('/data/IAS/obs/00299_IAS/00299_TAS_KSC101_20220701_132613.csv')]

PTC10 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_PTC10.csv'),
PosixPath('/data/IAS/obs/00299 _IAS/00299_IAS_PTC10_20220701_132613.csv"')]

EQ99 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_EQ99.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299 _IAS_EQ99_20220701_132613.csv')]

TCS -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_TCS.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299 _IAS_TCS_20220701_132613.csv')]

TCS-HK -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_TCS-HK.csv'),
PosixPath('/data/IAS/obs/00299 _IAS/00299_IAS_TCS-HK_20220701_132613.csv')]

DAS-PTC10 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_DAS-PTC10.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_DAS-PTC10_20220701_132613.csv')]

AEU-CRIO -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-CRIO.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_AEU-CRIO_20220701_132613.csv')]

AEU-PSUT -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-PSUT.csv'),
PosixPath('/data/IAS/obs/00299 _IAS/00299_IAS_AEU-PSU1_20220701_132613.csv')]

AEU-PSU2 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-PSU2.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_AEU-PSU2_20220701_132613.csv")]

AEU-PSU3 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-PSU3.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_AEU-PSU3_20220701_132613.csv")]

AEU-PSU4 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-PSU4.csv'),
PosixPath('/data/IAS/obs/00299 _IAS/00299_IAS_AEU-PSU4_20220701_132613.csv")]

AEU-PSU5 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-PSU5.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_AEU-PSU5_20220701_132613.csv')]

AEU-PSU6 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-PSU6.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_AEU-PSU6_20220701_132613.csv')]

AEU-AWGT -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-AWGT.csv'),
PosixPath('/data/IAS/obs/00299 _IAS/00299 IAS_AEU-AWG1_20220701_132613.csv")]

AEU-AWG2 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_AEU-AWG2.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_AEU-AWG2_20220701_132613.csv')]

N-FEE_SPW -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_N-FEE_SPW_01903.hdf5")]

DPU -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS DPU.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_DPU_20220701_132613.csv')]

N-FEE-HK -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_N-FEE-HK.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_N-FEE-HK_20220701_132613.csv')]

FW8SMC4 -> [PosixPath('/data/IAS/daily/20220701/20220701_IAS_FW8SMC4.csv'),
PosixPath('/data/IAS/obs/00299_IAS/00299_IAS_FW8SMC4_20220701_132613.csv')]
An observation is registered: IAS_00062_00299
Total disk space: 1.718 TiB
Used disk space: 183.215 GiB (10.41%)
Free disk space: 1.452 TiB (84.50%)

8 | 3. Software Interfaces

S
&

PLATO-KUL-PL-ICD-0002 KU Leuven

!

[plato-data@plato-arrakis 20220701]%

3.1. The Storage Data Interface | 9

KU Leuven

e

PLATO-KUL-PL-ICD-0002

4. Data Format

4.1. The format of the FITS files

During the camera tests, the DPU will be configured such that a specific part of the E- and/or F-side of
the selected CCDs will be transmitted (in the form of SpW packets) for a specified number of cycles.
The following information will be reconstructed from these SpW packets and stored in FITS files:

transmitted image data of the selected side(s) of the selected CCDs, for all cycles;
* transmitted serial pre-scan data of the selected side(s) of the selected CCDs, for all cycles;

 transmitted serial over-scan data of the selected side(s) of the selected CCDs, for all cycles;

transmitted parallel over-scan data (if any) of the selected side(s) of the selected CCDs, for all
cycles.

While the SpW packets come in, the individual exposures are stored in individual extensions in FITS
files that carry "images" in their name. This type of data arrangement is called a "flat structure". When
there’s a change in crucial parameters, a new FITS file will be constructed (with "cube" in its name),
based on the flat-structure FITS file, in which the exposures are aggregated into cubes. The original,
flat-structure file will be removed from the system. For analysis, only the FITS files with the cubes will
be available, and therefore only the structure of these will be discussed in the section below.

Each of the extensions (apart from the PRIMARY extension) will occur only once and comprise a 3D data
array and a header with the metadata that is specific to that extension. The name of an extension will
reflect what type of data product it comprises (e.g. image data of the F-side of CCD2, serial pre-scan
data of the E-side of CCD3, etc.). The following extensions can be included in the FITS files:

O descibe the slicing strategy and how this is handled in the commanding
4.1.1. Crucial Parameters
4.1.2. FITS Filenames

4.1.3. Slicing Strategy

4.2. The format of the HDFS5 files

The HDFS5 files contain the raw data that is read out from the camera through the spacewire interface
that is connected to the front-end-electronics (FEE).

In contrast to the FITS files, which are organised around the image data, the HDF5 files are organised
around the readout sequence and the telemetry that is sent out by the camera. Each HDF5 file
contains exactly one readout sequence, i.e. four frames in external sync mode and one frame for
internal sync. The data is not processed, but the raw data packets are saved as an Numpy array of type
uint8, all values are unsigned integers of 8 bits, i.e. a byte.

Inspecting the HDFS5 files can be done with the h5py module or you can use the CGSE module egse.h5

10 | 4. Data Format

PLATO-KUL-PL-ICD-0002

R
NCw/

KU Leuven

which provides convenience functions to work with HDFS5 files. We normally use the CGSE module to
explore the HDFS5 files, but will provide equivalent code for inspection with the h5py module where
possible.

egse.h5

>>> from egse import h5

hSpy

>>> import h5py

4.2.1. HDF5 format version

Each HDFS5 file generated by the storage or the data dumper has a group /versions/format_version
which contains two attributes, major_version and minor_version. In the following example, we see that
the current version number for an N-FEE HDFS5 file is 2.6 and for an F-FEE HDFS file is 3.0. The major
version will not change anymore, we fixed it to major_version=2 for N-FEE and major_version=3 for F-
FEE. Only the minor version will increase when format changes are introduced in the HDF5 file.

N-FEE

>>> from egse import h5

>>> h5_fd = h5.get_file('20240606_CSL2_N-FEE_SPW_00001.hdf5"', mode='r")
>>> h5.get_attributes(h5_fd['/versions/format_version'])
{'major_version': 2, 'minor_version': 6}

F-FEE

>>> from egse import h5

>>> h5_fd = h5.get_file('20240605_KUL_F-FEE_SPW_00803.hdf5', mode='r")
>>> h5.get_attributes(h5_fd['/versions/format_version'])
{'major_version': 3, "minor_version': @}

The format_version for the N-FEE HDF5 files is set in the function save_format_version() in the
egse.dpu.init.py. For the F-FEE HDF5 files, the format_version is set in the method
dump_format_version() of the Data Dumper. As of this writing, the history is as follows:

N-FEE

- introduced the format_version

- Added obsid as a dataset to the HDF5 file

- Multiple commands can now be saved under the same frame number
introduced /dpu/num_cycles attribute

- introduced /dpu/slicing_num_cycles attribute

- introduced /{frame number}/hk_data dataset

- introduced /fee/type attribute (type can be N-FEE or F-FEE)

=R R R R R R

NN NN N NN

oOUTRAEWN A
1

4.2. The format of the HDFS5 files | 11

KU Leuven

R

N

PLATO-KUL-PL-ICD-0002

F-FEE

3.0 0 introduced the format_version for F-CAM
3.1 0 /commands now have a timestamp attribute, next to the duration

Since the format and content of the N-FEE and F-FEE HDF?5 files are quite different, we have split the
description in two sections below. We will go through the different groups, datasets, and attributes of
each of these files, explain how to extract the information from the HDFS5 file and what the content is.
Since some of you are more used to the h5py package we will try to extract and visualize the data using
both the egse.h5 as the h5py package. A third visualisation is with the h5tui app, which is a generic
HDFS5 viewer (a terminal app) that was developed for this project. We will use that with the F-FEE
HDFS5 files.

4.2.2. Inspection of an N-FEE HDFS5 file

This section describes the format and content of an N-FEE HDFS5 file. For information about the HDF5
file for the F-FEE, checkout Section 4.2.3.

Let’s take an example file from IAS taken on 7th February 2023. The file is loaded with the
h5.get_file() function and we can visualize the top level structure as follows:

egse.h5

>>> h5_fd = h5.get_file("20240329_CSL2_N-FEE_SPW_00017.hdf5")
>>> h5.show_file(h5_fd)

[6] @

[6] 1

[6] 2

[6] 3

[D] dpu (104 bytes)

[D] fee (104 bytes)

[D] obsid (104 bytes)

[D] register (2.109 KB)

[G] versions

Total size of Group = 159.598 MB
Total size of attributes: @ bytes

hSpy

>>> h5_fd = h5py.File("20230207_IAS_N-FEE_SPW_06174.hdf5")
>>> [x for x in h5_fd]
['e", "1, '2', '3', 'dpu', 'fee', 'obsid', 'register', 'versions']

We can see that there are five top-level groups and four datasets. This is data taken in external sync
mode, so we have four readouts per cycle. The data from each readout is in the groups 0, 1, 2, and 3.
These numbers correspond to the frame number. Each of these groups has the following structure:

egse.h5

>>> h5.show_groups(h5_fd["/0"], max_level=1)

12 | 4. Data Format

PLATO-KUL-PL-ICD-0002

ViV
N

KU Leuven

[G] data

[D] hk (266 bytes)

[D] hk_data (256 bytes)

[D] timecode (104 bytes)

Total size of Group = 39.899 MB

hSpy

>>> [x for x in h5_fd["/0"]]
['data’, 'hk', "hk_data', 'timecode']

The data group contains all the SpaceWire packets that have image data, i.e. normal data packets and
overscan packets. The data group also has the following attributes that are used to decode the
SpaceWire packets into image data arrays. We will describe the data groups into more detail later in
this section.

egse.h5

>>> h5.show_attributes(h5_fd["/0/data"])
DG_en: @ (32 bytes)
ccd_mode_config: 5 (32 bytes)
ced_read_en: 1 (32 bytes)
ccd_readout_order: 228 (32 bytes)
digitise_en: 1 (32 bytes)

h_end: 2294 (32 bytes)
int_sync_period: 2500 (32 bytes)
n_final_dump: @ (32 bytes)
sensor_sel: 3 (32 bytes)

sync_sel: @ (32 bytes)

v_end: 4539 (32 bytes)

v_start: @ (32 bytes)

Total size of attributes: 384 bytes

hSpy

>>> [x for x in h5_fd["/0/data"].attrs]

'DG_en',
"ccd_mode_config',
"ced_read_en',
'ccd_readout_order',
'digitise_en',
'h_end',
"int_sync_period"',
"'n_final_dump',
"sensor_sel',
'sync_sel’',
'v_end',

'v_start'

The two datasets in group '/0' contain the timecode and the housekeeping information that is sent on
every sync pulse. The timecode dataset contains the timecode itself and the timestamp when this
timecode was received by the DPU Processor. Remember the timecode is an integer from 0 to 63. The
timecode dataset is an array with one integer element, the timestamp is an attribute of the timecode

4.2. The format of the HDFS5 files | 13

KU Leuven

ava\

NCw/

PLATO-KUL-PL-ICD-0002

dataset. The timecode dataset and the timestamp can be visualised as follows.

egse.h5

>>> h5.qget_data(h5_fd["/0/timecode"])

array(53)

>>> h5.get_attribute_value(h5_fd["/0/timecode"], "timestamp")
'2023-02-07T715:13:10.397+0000"

hSpy

>>> h5_fd["/@/timecode"][()]

53

>>> h5_fd["/0/timecode"].attrs["timestamp"]
'2023-02-07715:13:10.397+0000"

The raw content of the hk dataset can be shown as follows. The hk dataset has no attributes currently.

egse.h5

>>> h5.qget_data(h5_fd["/0/hk"])
array([80, 240, @, 144, 5, 130, 24, 29, o, 0, 128, @, 128,
0, 128, 0, 128, 0, 128, 0, 128, 0, 127, 255, 127, 255,
127, 255, 127, 255, 127, 255, 127, 255, 127, 255, 127, 255, 127,
255, 128, 21, @, @, 128, 88, 128, 87, 128, 88, 128, 88,
128, 88, 128, 87, 128, 88, 128, 88, 128, 85, 128, 86, 128,
86, 57, 191, 252, 138, 250, 233, 128, 87, 128, 88, 26, 159,
231, 93, 25, 121, 231, 110, 26, 140, 223, 53, 26, 128, 83,
191, 64, 186, 7, 68, 251, 124, 58, 236, 10, 181, @, O,
128, 87, 128, 88, 148, 193, 128, 85, 128, 89, 148, 193, 128,
88, 128, 88, 148, 186, 128, 86, 128, 89, 148, 202, 128, 86,
128, 87, 128, 85, 128, 89, 128, 96, @, 53, @, 1, 24,
29, o, o, o, 9o, o, 0o, 0, 0, 0, 24], dtype=uint8)

hS5py

>>> h5_fd["/0/hk"1[()]
array([80, 240, o, 144, 5, 130, 24, 29, @, @, 128, 0, 128,
0, 128, 0, 128, e, 128, @, 128, @, 127, 255, 127, 255,
127, 255, 147, 255, 127, 255, 12, 255, 127, 255, 127, 255, 12,
255, 128, 21, o, @, 128, 88, 128, 87, 128, 88, 128, 88,
128, 88, 128, 87, 128, 88, 128, 88, 128, 85, 128, 86, 128,
86, 57, 191, 252, 138, 250, 233, 128, 87, 128, 88, 26, 159,
231, 93, 25, 121, 231, 110, 26, 140, 223, 53, 26, 128, 83,
191, 64, 186, 7, 68, 251, 124, 58, 236, 10, 181, 0, O,
128, 87, 128, 88, 148, 193, 128, 85, 128, 89, 148, 193, 128,
88, 128, 88, 148, 186, 128, 86, 128, 89, 148, 202, 128, 86,
128, 87, 128, 85, 128, 89, 128, 9@, O, 53, 0, 1, 24,
29, o, o o 90 0, 0 0 @ , 24], dtype=uint8)

S

There is also a hk_data dataset which contains the housekeeping data that was requested from the FEE
after all image data has been transmitted. The difference between the hk and the hk_data is that the
former is a HousekeepingPacket object, while the latter is a HousekeepingData object. The reason for this

14 | 4. Data Format

PLATO-KUL-PL-ICD-0002 KU Leuven

difference is that the hk is a SpW packet that is always sent by the FEE after the timecode, the hk_data
is the memory requested that contains the housekeeping information, no SpW packet was every
constructed for it (as it was sent in an RMAP read request reply).

So, why do we need this additional hk_data? This was a request by ESA, the

o housekeeping after all data is sent contains valuable information about the FEE
during the transmission of the data, e.g. the error flags reflect possible errors that
occurred during the transmission.

The CGSE provides a module to inspect and work with PLATO SpaceWire packets. The above
housekeeping packet can be inspected using the HousekeepingPacket class from the egse.spw package:

egse.h5

>>> from egse.spw import HousekeepingPacket
>>> hk_data = h5.get_data(h5_fd["/@/hk"])
>>> hk = HousekeepingPacket(hk_data)
>>> print(hk)
HousekeepingPacket:
Logical Address = 0x50
Protocol ID = 0xF@
Length = 144
Type = mode:FULL_IMAGE_MODE, last_packet:True, CCD side:E, CCD number:0, Frame number:@, Packet
Type:HOUSEKEEPING_DATA
Frame Counter = 16
Sequence Counter = @
Header = 50 FO 00 90 05 82 00 10 00 00
Data HEX = 00 00 00 00 00 00 00 00 00 00 00 01 7F FF 7F FF 7F FF 7F FF 7F FF 7F FF 7F FF 7F FF 7F FF 80
15 80 57 80 58 80 57 80 58 80 58 80 58 80 57 80 58 80 58
DBtR ASE = cooocoooooooooocooosooccooacoonoa WX W XXX WL XL X----

h5py
In this case only the retrieving of the hk_data is different:

>>> hk_data = h5_fd["/0/hk"1[()]

Inspecting the housekeeping data, can be done as follows, please note that the HousekeepingData class
is dependent on the camera type, for the N-FEE, the class is loaded from egse.dpu.npdu.dpu.

>>> from egse.dpu.ndpu.dpu import HousekeepingData
>>> hk_data = h5.get_data(h5_fd["/0/hk_data"])
>>> hk_data = HousekeepingData(hk_data)
>>> print(hk_data)
Housekeeping Data

|

| Parameter | Value | Value | Value |

L 1 1 1
| | | |
—

| TOU_SENSE 1 | o | 0x0 | 0bo |

| TOU_SENSE_2 | o | 0x0 | 0bo |

| TOU_SENSE_3 | o | 0x0 | 0bo |

| TOU_SENSE 4 | o | 0x0 | 0bo |

| TOU_SENSE_5 | o | 0x0 | 0bo |

4.2. The format of the HDFS5 files | 15

KU Leuven

TOU_SENSE_6
CCD2_TS
CCD3_TS
CCD4_TS
CCD1_TS

PRT1

PRT2

PRT3

PRT4

PRT5
ZERO_DIFF_AMP
CCD2_VOD_MON_F
CCD2_V0G_MON
CCD2_VRD_MON_E
CCD3_VOD_MON_F
CCD3_V0G_MON
CCD3_VRD_MON_E
CCD4_VOD_MON_F
CCD4_V0G_MON
CCD4_VRD_MON_E
CCD1_VOD_MON_F
CCD1_V0G_MON
CCD1_VRD_MON_E
VeeD

VRCLK_MON
VICLK
CCD2_VOD_MON_E
CCD3_VOD_MON_E
5VB_NEG_MON
3V3B_MON
2V5A_MON
3V3D_MON
2V5D_MON
1V5D_MON
5VREF_MON
VCCD_POS_RAW
VCLK_POS_RAW
VAN1_POS_RAW
VAN3_NEG_MON
VAN2_POS_RAW
VDIG_RAW
1V8D_MON
CCD4_VOD_MON_E
CCD2_VRD_MON_F
CCD2_VDD_MON
CCD2_VGD_MON
CCD3_VRD_MON_F
CCD3_VDD_MON
CCD3_VGD_MON
CCD4_VRD_MON_F
CCD4_VDD_MON
CCD4_VGD_MON
CCD1_VRD_MON_F
CCD1_VDD_MON
CCD1_VGD_MON
IG_HI_MON
CCD1_VOD_MON_E
TSENSE_A
TSENSE_B
spw_status
reg_32_hk_reserved
spw_timecode
rmap_target_status

rmap_target_indicate
spw_link_escape_error

spw_credit_error
spw_parity_error
spw_link_disconnect

16 | 4. Data Format

32767
32767
32767
32767
32767
32767
32767
32767
32767
32789
32855
32856
32855
32856
32856
32856
32855
32856
32856
32853
32854
32854
14783
64650
64233
32855
32856
6815

59229
6521

59246
6796

57141
6784

21439
16570
1860

64380
15084
2741

32855
32856
38081
32853
32857
38081
32856
32856
38074
32854
32857
38090
32854
32855
32853
32857
32858

=5

(SSRGS SIS IS S RIS IS NS IS

0x1
Ox7fff
Ox7fff
Ox7fff
Ox7fff
Ox7fff
Ox7fff
Ox7fff
Ox7fff
Ox7fff
0x8015
0x8057
0x8058
0x8057
0x8058
0x8058
0x8058
0x8057
0x8058
0x8058
0x8055
0x8056
0x8056
0x39bf
Oxfc8a
0xfae9
0x8057
0x8058
0x1a9f
Oxe75d
0x1979
Oxe76e
0x13a8c
0xdf35
0x1a80
0x53bf
0x40ba
0x744
Oxfb7c
0x3aec
0xab5
0x0
0x8057
0x8058
0x94c1
0x8055
0x8059
0x94c1
0x8058
0x8058
0x94ba
0x8056
0x8059
0x94ca
0x8056
0x8057
0x8055
0x8059
0x805a
0x1

ava\

NCw/

0b1
@b111111111111111
2b111111111111111
0b111111111111111
@b111111111111111
2b111111111111111
2b111111111111111
@b111111111111111
2b111111111111111
0b111111111111111
0b1000000000010101
0b1000000001010111
0b1000000001011000
0b1000000001010111
0b1000000001011000
0b1000000001011000
0b1000000001011000
0b1000000001010111
0b1000000001011000
0b1000000001011000
0b1000000001010101
0b1000000001010110
0b1000000001010110
0b11100110111111
0b1111110010001010
#b1111101011101001
0b1000000001010111
0b1000000001011000
#b1101010011111
#b1110011101011101
0b1100101111001
#b1110011101101110
0b1101010001100
0b1101111100110101
0b1101010000000
0b101001110111111
0b100000010111010
#b11101000100
0b1111101101111100
0b11101011101100
#b101010110101

0b0
0b1000000001010111
0b1000000001011000
0b1001010011000001
0b1000000001010101
0b1000000001011001
0b1001010011000001
0b1000000001011000
0b1000000001011000
0b1001010010111010
0b1000000001010110
0b1000000001011001
0b1001010011001010
0b1000000001010110
0b1000000001010111
0b1000000001010101
0b1000000001011001
0b1000000001011010
0b1

0bo

0b0

0b0

0bo

0b0

0b0

0bo

0b0

PLATO-KUL-PL-ICD-0002

PLATO-KUL-PL-ICD-0002 (85

spw_link_running	1	ox1	b1
frame_counter	16	0x10	©b10000
reg_33_hk_reserved ()	oxe	obo	
op_mode	o	0x0	0bo
frame_number	0	0x0	0be
error_flags ()	oxe	obo	
FPGA minor version	24	ox18	0b11000
FPGA major version	0	0x0	0bo
Board ID	0	0x0	b0
reg_35_hk_reserved	o	0x0 \	
L

0bo
|

KU Leuven

Thus far we have explored the following format of the HDFS5 file:

h5_file
—— 9
| ———— data
| F—— hk
| F————— hk_data
| L—— timecode
——1
| I data
| F———— hk
| ———— hk_data
| L——— timecode
—2
| ————— data
| F——— hk
| —————— hk_data
| L—— timecode
—3
| ————— data
| F—— hk
| ——— hk_data
| L—— timecode
—— dpu
— fee
———— obsid
————— register

[.
versions

——— format_version

We haven’t inspected the versions group yet, it currently contains only one dataset, format_version.
This version describes the changes in the HDF5 file with respect to available groups, datasets and

attributes. The format version can be accessed as follows.

egse.h5

>>> hb5.show_attributes(h5_fd["/versions/format_version"])
major_version: 2 (32 bytes)

minor_version: 6 (32 bytes)

Total size of attributes: 64 bytes

hSpy

>>> 1ist(h5_fd["/versions/format_version"].attrs)
['major_version', 'minor_version']
>>> h5_fd["/versions/format_version"].attrs["major_version"]

4.2. The format of the HDFS5 files | 17

&%)
KU Leuven féwiﬁ PLATO-KUL-PL-ICD-0002
2
>>> h5_fd["/versions/format_version"].attrs["minor_version"]
6

[11

Up to now, the format versions have changed from 2.0 to 2.6 as follows:

- introduced the format_version

- Added obsid as a dataset to the HDF5 file

- Multiple commands can now be saved under the same frame number
introduced /dpu/num_cycles attribute

- introduced /dpu/slicing_num_cycles attribute

- introduced /{frame number}/hk_data dataset

- introduced /fee/type attribute (type can be N-FEE or F-FEE)

NN N NN NN
(=2 R U S R O R -
1

XXXXX: We have decided that the format version of the N-FEE will always be 2 and the format version
of the F-FEE will always be 3. This needs to be explained!

Before we dive into the data groups, let’s first inspect the four remaining datasets dpu, fee, obsid and
register. The obsid dataset contains the full observation identifier where this HDF5 file belongs to as a
bytes object. If the obsid is empty, no observation was running.

egse.h5

>>> h5.get_data(h5_fd["/obsid"]).item()
b'IAS_00088_00938'

hSpy

>>> h5_fd["/obsid"][()]
b'IAS_00088_00938"

The dpu dataset contains DPU Processor specific parameters that are needed to properly process the
data. These parameters are available as attributes to this dataset and are mainly used by the FITS
generation process.

egse.h5

>>> h5.show_attributes(h5_fd["/dpu"])
num_cycles: 10 (32 bytes)
slicing_num_cycles: @ (32 bytes)
Total size of attributes: 64 bytes

hSpy

>>> list(h5_fd["/dpu"].attrs)
['num_cycles', 'slicing_num_cycles']
>>> h5_fd["/dpu"].attrs["num_cycles"]
10

18 | 4. Data Format

PLATO-KUL-PL-ICD-0002 KU Leuven

The fee dataset contains FEE specific parameters that are needed to properly process the data. These
parameters are available as attributes to this dataset and are mainly used by the FITS generation
process. Currently, the only attribute if the fee/type which can be either 'N-FEE' or 'F-FEE'".

egse.h5

>>> h5.show_attributes(h5_fd["/fee"])
type: N-FEE (54 bytes)
Total size of attributes: 54 bytes

hS5py

>>> list(h5_fd["/fee"].attrs)
['type']

>>> h5_fd["/fee"].attrs["type"]
"N-FEE'

Finally, the register dataset is a Numpy array that is a mirror of the register memory map in the N-
FEE at the time of the sync pulse.

egse.h5

>>> h5.get_data(h5_fd["/register"])
array([17, 187, @, ..., @, @, 0], dtype=uint8)

hSpy

>>> h5_fd["/register"]1[()]
array([17, 187, 0, ..., @, 0, 0], dtype=uint8)

The content of the register dataset can be inspected using the RegisterMap class from the CGSE. If you
are using a slightly older version of the CGSE, your output might looks different, i.e. not in a nicely
formatted table. The content is however the same.

>>> import rich

>>> from egse.reg import RegisterMap

>>> reg_data = h5.get_data(h5_fd["/register"])

>>> reg = RegisterMap(name="N-FEE", memory_map=reg_data)
>>> rich.print(reg)

]

| Register | Parameter | HEX |

L 1 L]
I 1 1 1
| reg_@_config | v_start | 0x0 |

| reg_0_config | v_end | ox11bb |

| reg_1_config | charge_injection_width | ox64 |

| reg_1_config | charge_injection_gap | ox64 |

| reg_2_config | parallel_toi_period | ox36b |

| reg_2_config | parallel_clk_overlap | oxfa |

| reg_2_config | ccd_readout_order | Oxed |

| reg_3_config | n_final_dump | ox0 |

| reg_3_config | h_end | ox8f6 |

| reg_3_config | charge_injection_en | 0x0 |

4.2. The format of the HDFS5 files | 19

KU Leuven

reg_3_config

reg_3_config

reg_3_config

reg_4_config

reg_4_config

reg_5_config

reg_5_config

reg_5_config

reg_5_config

reg_5_config

reg_5_config

reg_5_config

reg_5_config

reg_6_config

reg_7_config

reg_8_config

reg_8_config

reg_8_config

reg_8_config

reg_9_config

reg_10_config
reg_11_config
reg_11_config
reg_11_config
reg_11_config
reg_12_config
reg_13_config
reg_14_config
reg_14_config
reg_14_config
reg_14_config
reg_15_config
reg_16_config
reg_17_config
reg_17_config
reg_17_config
reg_17_config
reg_18_config
reg_18_config
reg_18_config
reg_19_config
reg_19_config
reg_19_config
reg_19_config
reg_20_config
reg_20_config
reg_20_config
reg_21_config
reg_21_config
reg_21_config
reg_21_config
reg_21_config
reg_21_config
reg_21_config
reg_21_config
reg_21_config
reg_22_config
reg_22_config
reg_22_config
reg_22_config
reg_22_config
reg_22_config
reg_22_config
reg_22_config
reg_22_config
reg_23_config
reg_23_config
reg_23_config

20 | 4. Data Format

tri_level_clk_en
img_clk_dir
reg_clk_dir
packet_size
int_sync_period

Trap_Pumping_Dwell_counter

sync_sel

sensor_sel

digitise_en

DG_en

ccd_read_en

conv_dly
High_precision_HK_en
ced1_win_list_ptr
ccd1_pktorder_list_ptr
ced1_win_list_length
ced1_win_size_x
ced1_win_size_y
reg_8_config_reserved
ced2_win_list_ptr
ccd2_pktorder_list_ptr
ccd2_win_list_length
ccd2_win_size_x
ccd2_win_size_y
reg_11_config_reserved
ced3_win_list_ptr
ccd3_pktorder_list_ptr
ced3_win_list_length
ccd3_win_size_x
ccd3_win_size_y
reg_14_config_reserved
ced4d_win_list_ptr
ccd4_pktorder_list_ptr
ccd4_win_list_length
ccd4_win_size_x
ccd4d_win_size_y
reg_17_config_reserved
ced_vod_config
ced1_vrd_config
ccd2_vrd_config
ccd2_vrd_config
ccd3_vrd_config
ccd4_vrd_config
ced_vgd_config
ced_vgd_config
ced_vog_config
ced_ig_hi_config
ced_ig_lo_config
trk_hld_hi

trk_hld_lo

cont_rst_on
cont_cdsclp_on
ccd_mode_config
cont_rowclp_on
reg_21_config_reserved
clear_error_flag
r_cfgl

r_cfg2

cdsclp_lo

adc_pwrdn_en
reg_22_config_reserved_1
cdsclp_hi

rowclp_hi

rowclp_lo
reg_22_config_reserved_2
ccd1_last_Epacket
ccd1_last_Fpacket
ccd2_last_Epacket

0x0
0x0
0x0
0x7d8c
0x9c4
0x30d4
0x0
0x3
0x1
0x0
0x1
Oxf
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
Oxeef
0xeb5
0x65
Oxe
0xeb5
0xeb5
0x9
0xb1
0x19a
Oxfff
0x0
0x4
Oxe
0x0
0x0
0x5
0x0
0x0
0x1
0x7
0xb
0x9
0x1
0x0
0x0
0x0
0x2
0x0
0x0
0x0
0x0

ER
\i§;

PLATO-KUL-PL-ICD-0002

PLATO-KUL-PL-ICD-0002

A
N

KU Leuven

reg_23_config reg_23_config_reserved 0x0
reg_24_config ccd2_last_Fpacket 0x0
reg_24_config ccd3_last_Epacket 0x0
reg_24_config ccd3_last_Fpacket 0x0
reg_24_config reg_24_config_reserved 0x0

| | | |
\ | | |
| | | |
| | | |
\ | | |
| reg_25_config | ccd4_last_Epacket | 0xo |
| | | |
\ | | |
| | | |
| | | |
\ | | |
L

reg_25_config ccd4_last_Fpacket 0x0
reg_25_config Surface_Inversion_counter 0x64
reg_25_config reg_25_config_reserved 0x0
reg_26_config Readout_pause_counter 0x7d0
reg_26_config 0x3e8

Trap_Pumping_Shuffle_counter
|

The last group to inspect is the data group which is part of each of the readout groups. The data group
contains all the SpaceWire packets that contain the CCD image data. The packets contain the serial
prescan, serial overscan, the actual image data and the parallel overscan (if present). From the
attributes of the dpu dataset we learned that h_end=2294, v_start=0 and v_end=4539. The h_end attribute
defines what is in the row data. The value h_end=2294 means 25 pixels of serial prescan, 2255 pixels of
image data, and 15 pixels of serial overscan data. Each packet in the data group is a Numpy array of
type uint8, but the actual pixel data is a 16bit integer. The header of a SpW data packet is 10 bytes, so
from this information we can calculate that there are 7 lines contained in each packet of length 32140.
We also have data packets of 9190 bytes which contain only two rows of data.

>>> (32140-10)/2/2295
7.0
>>> (9190-10)/2/2295
2.0

We requested 4540 rows (v_end - v_start + 1) which is a full CCD of 4510 rows + 30 rows parallel
overscan data. Image data and overscan data are sent in separate packets, so we have 644 + 1 packets
of image data and 4 + 1 packets of parallel overscan data.

>>> 644*7 + 1*2 4 644 packets of 32140 bytes + 1 packet of 9190 bytes
4510

>>> 4*7 + 1*2 # 4 packets of 32140 bytes + 1 packet of 9190 bytes

30

This gives us a total of 650 packets for one side of the CCD, but since we requested both sides of the
CCD (see sensor_sel=3 in the dpu attributes or the register dataset above), we end up with a total of
1300 packets (datasets) in each of the data groups in /0, /1, /2, and /3.

>>> len(h5_fd["/0/data"])
1300

4.2.3. Inspection of the F-FEE HDFS file

For this section we are going to inspect a few HDFS5 files that were created during testing of the F-FEE
EM at KU Leuven back in 2024. The tests retrieved CCD image data from each side of the CCDs in a
consecutive manner, i.e. no data was retrieved over multiple SpaceWire links simultaneously. The EM
didn’t have an AEB4 unit.

4.2. The format of the HDFS5 files | 21

The top-level groups of an F-FEE HDFS file are listed below:

egse.h5

>>> h5_fd = h5.get_file("20240911_KUL_F-FEE_SPW_01273.hdf5")
>>> h5.show_file(h5_fd)

[G] AEB1-F

[6] commands

[D] fee (104 bytes)

[G] hk-data

[D] obsid (104 bytes)

[D] register (520.109 KB)

[D] setup (104 bytes)

[D] timecode (104 bytes)

[G] versions

Total size of Group = 10.674 MB
has_data: True (25 bytes)

Total size of attributes: 25 bytes

hSpy

>>> h5_fd = h5py.File("20240911_KUL_F-FEE_SPW_01273.hdf5")
>>> [x for x in h5_fd]
['AEB1-F', 'commands', 'fee', 'hk-data', 'obsid', 'register', 'setup', 'timecode', 'versions']

h5tui

plato-data@screwdriver: ~/git/plato-common-egse

HDF5Browser —

F— » G AEB1-F (size=3)
{— » G commands (size=6)
fee
» G hk-data (size=5) : /data/KUL/daily/202408911/20240911_KUL_F-FEE_SPW_81273.hdf5
obsid 1
register
setup
timecode
» G versions (size=1)

Attributes

[]

has_data | True

q Quit o Open File... n Next p Previous “p palette

You can see immediately that the top-level groups are quite different from the N-FEE HDFS5 file. That is
because the concept of cycles is different. Where the N-FEE has a cycle of 25s where the 4 CCDs are
read out in 6.25s readout periods, the F-FEE has a cycle time of 2.5s where we read out one half of one
CCD over a dedicated SpaceWire link. So, the first group that we see is the AEB1-F which contains the
image data for the F-side of the CCD connected to the AEB1 unit. That is currently the bes we can do.
We will usually read out 5 frames in 5 different HDF5 files, then switch to another CCD half.

22 | 4. Data Format

Let’s look into this group into more detail. There is one sub-group data and two datasets hk_deb and
hk_aeb. These two datasets are the housekeeping packets that are sent by the F-FEE together with the
image data, i.e. when the DEB is in FULL_IMAGE mode and the AEB that was selected is in IMAGE
mode.

egse.h5

>>> h5.show_groups(h5_fd["/AEB1-F"], max_level=1)
[G] data

[D] hk_aeb (253 bytes)

[D] hk_deb (149 bytes)

Total size of Group = 10.163 MB

hS5py

>>> [x for x in h5_fd["/AEB1-F"]]
['data', "hk_aeb', 'hk_deb']

h5tui

plato-data@screwdriver: ~/git/plato-common-egse

HDF5Browser —

{— ¥ G AEB1-F (size=3)
F— » G data (size=2268)
— D hk_aeb
| — 0 hk_deb : /data/KUL/daily/20240911/26240911_KUL_F-FEE_SPW_81273.hdf5
— » G commands (size=6) 5
[— D fee
— » G hk-data (size=5)
— D obsid
— D register
— D setup
— D timecode
“— » G versions (size=1)

Attributes

name value

has_data | True

q Quit o Open File... n Next p Previous Ap palette

The data group contains all the SpaceWire packets that have image data, i.e. normal data packets and
overscan packets. The data group also has the attributes ccd_side and overscan_lines that are used to
decode the SpaceWire packets into image data arrays. We will describe the data groups into more
detail later in this section.

The second top-level group is the commands group which contains a description of the commands that
were sent right after the sync pulse for this cycle. The commands are numbered starting from zero
and have an attribute duration which gives the total time that this command needed to execute (in
seconds). The h5tui shows the commands with syntax highlighting. We see that six commands were
sent during this cycle, sync_register_map, deb_read_hk and four aeb_read_hk. We find back the result of
these commands in the other groups.

4.2. The format of the HDFS5 files | 23

egse.h5

>>> h5.show_datasetss(h5_fd["/commands"])
[D] @ (104 bytes)

[D] 1 (104 bytes)

[D] 2 (104 bytes)

[D] 3 (104 bytes)

[D] 4 (104 bytes)

[D] 5 (104 bytes)

Total size of datasets in this group is 624 bytes
>>> h5.show_attributes(h5_fd["/commands/0"])
duration: 0.02686471794731915 (32 bytes)
Total size of attributes: 32 bytes

hSpy

>>> [x for x in h5_fd["/commands"]]

['e*, "1, 2", '3', '4', '5"]

>>> h5_fd["/commands/0"][...]

array(b"command_sync_register_map, args=[], kwargs={'dump-response': False, 'response': False}",
dtype=object)

>>> h5_fd["/commands/@"].attrs['duration']

0.02686471794731915

h5tui

HDFSBrowser —

command-view

conmand_aeb_read_hk('AEBL', dump-response=True, response=False)

» G versions (size=1)

Attributes

q Quit o Open File... n Next p P

The Register Map that was synchronised is stored in the top-level register group as numpy array. You
will have to convert this array into a RegisterMap object to inspect it. If you use the rich package to
print this, you will get a nice table with all register parameters and their attributes and values. The
RegisterMap is synchronised on every cycle right after the reception of the timecode.

egse.h5

>>> import rich
>>> from egse.reg import RegisterMap
>>> rich.print(RegisterMap("F-FEE", memory_map=h5_fd["register"][...1))

24 | 4. Data Format

PLATO-KUL-PL-ICD-0002 KU Leuven
| Register | Parameter | Address | Offset | Width | Value (int) | Value (hex)
|
L 1 1
I 1 1

} } } } |
| DEB_DTC_AEB_ONOFF | AEB_IDX1 | 0x0 | 0 | 1 | 1 | ox1
|
| DEB_DTC_AEB_ONOFF | AEB_IDX2 | 0x0 | 1 | 1 | 1 | ox1
|
| DEB_DTC_AEB_ONOFF | AEB_IDX3 | 0x0 | 2 | 1 | 1 | ox1
|
| DEB_DTC_AEB_ONOFF | AEB_IDX4 | 0x0 | 3 | 1 | 1 | ox1
|
| DEB_DTC_AEB_ONOFF | RESERVED | 0x0 | 4 | 28 | o | 0x0
|
| DEB_DTC_PLL_REG_1 | €1 | ox4 | 0 | 2 | 3 | 0x3
|
| DEB_DTC_PLL_REG_1 | LOCKW | ox4 | 2 | 2 | 3 | 0x3
|
| DEB_DTC_PLL_REG_1 | LOCK | 0x4 | 4 | 2 | 3 | 0x3
|
| DEB_DTC_PLL_REG_1 | FOFF | ox4 | 6 | 1 | 0 | 0x0
|
| DEB_DTC_PLL_REG_1 | RESERVED_1 | ox4 | 7 | 2 | 0 | 0x0
|
| DEB_DTC_PLL_REG_1 | HOLDF | 0x4 | 9 | 1 | o | 0x0
|
| DEB_DTC_PLL_REG_1 | RESERVED_2 | ox4 | 10 | 1 | 0 | 0x0
|
| DEB_DTC_PLL_REG_1 | HOLDTR | ox4 [1 | 1 | 0 | 0x0
|
| DEB_DTC_PLL_REG_1 | RESERVED_3 | 0x4 | 12 | 4 | o | 0x0
|
| DEB_DTC_PLL_REG_1 | GTME | ox4 | 16 | 1 | 0 | 0x0
|
| DEB_DTC_PLL_REG_1 | RESERVED_4 | ox4 | 17 | 1 | 0 | 0x0
|
| DEB_DTC_PLL_REG_1 | PFDFC | 0x4 | 28 | 1 | o | 0x0
|
| DEB_DTC_PLL_REG_1 | RESERVED_5 | ox4 | 29 | 3 | 0 | 0x0
|
hSpy
>>> import rich
>>> from egse.reg import RegisterMap
>>> rich.print(RegisterMap("F-FEE", memory_map=h5_fd["/register"][...]))
1]]
T T 1 T 1
Register | Parameter | Address | Offset | Width | Value (int) | Value (hex)

1 1

I I
1 1 1 1]
1 1 1 1 1

| DEB_DTC_AEB_ONOFF | AEB_IDX1 | ox0 | o [1 [1 | ox1
I DEB_DTC_AEB_ONOFF | AEB_IDX2 | ox0 | 1 [1 [1 | ox1
: DEB_DTC_AEB_ONOFF | AEB_IDX3 | oxe | 2 | 1 | 1 | ox1
I DEB_DTC_AEB_ONOFF | AEB_IDX4 | ox0 | 3 [1 [1 | ox1
I DEB_DTC_AEB_ONOFF | RESERVED | ox0 | 4 | 28 | o | ox0
i DEB_DTC_PLL_REG_1 | €1 | ox4 | 0 | 2 | 3 | ox3

4.2. The format of the HDFS5 files | 25

| DEB_DTC_PLL_REG_1 | LOCKwW | ox4 2 2 0x3
: DEB_DTC_PLL_REG_1 | LOCK | ox4 4 2 0x3
: DEB_DTC_PLL_REG_1 | FOFF | ox4 b 1 0x0
: DEB_DTC_PLL_REG_1 | RESERVED_1 | ox4 7 2 0x0
: DEB_DTC_PLL_REG_1 | HOLDF | ox4 9 1 0x0
: DEB_DTC_PLL_REG_1 | RESERVED_2 | ox4 10 1 0x0
: DEB_DTC_PLL_REG_1 | HOLDTR | ox4 1 1 0x0
: DEB_DTC_PLL_REG_1 | RESERVED_3 | ox4 12 4 0x0
: DEB_DTC_PLL_REG_1 | GTME | ox4 16 1 0x0
: DEB_DTC_PLL_REG_1 | RESERVED_4 | ox4 17 1" 0x0
: DEB_DTC_PLL_REG_1 | PFDFC | ox4 28 1 0x0
: DEB_DTC_PLL_REG_1 | RESERVED_5 | ox4 29 3 0x0
|

h5tui

oo plato-data@screwdriver: ~/git/plato-common-egse

o HDFSBrowser —
¥ HDFS
reg-view
> G comn
fee
» G hk-data

D register]

setup X N AEB_IDX1
timecode X NO 2
» G versions (size=1) A

c.1

LOCKW

LOCK

FOFF
RESERVED_1
HOLDF
RESERVED_2
HOLDTR
RESERVED_3
GTHE
RESERVED_4

il D_5

_DIR
PRECP.
CP_CURRENT
PFD
FBHUX
YaHUX
YIHUX

q Quit o Open File... n Next p Previous

The other five commands have read the housekeeping data of the DEB and the four AEBs. The result
of these commands is stored in the hk-data group. As with the register map, you will find these HK
data are stored as a numpy array and need to be converted into a HousekeepingData object. If you use
the h5tui app, the HK data is nicely presented in a table.

Please note the difference between a housekeeping packet and housekeeping data.
The former is a full SpaceWire DataPacket and is self-standing, meaning it contains
all the information to process and visualise. The HK packet is sent out by the F-FEE
0 together with image data. The housekeeping data on the other hand is the memory
map from the F-FEE that contains its housekeeping data and that was requested by
command. We request this information on every cycle, otherwise we would be blind
on the status of the instrument and its sub-units. This HK data also provides us with

26 | 4. Data Format

monitoring information like CCD temperatures, voltages etc.

o HDFSBrowser —
¥ HDFS
> G AEB1-F (size=3) hk-view
> G commands (size=6)
fee
¥ G hk-data (size=5) Housekeeping Data for DEB

AEB1
AEB3

AEB4 STATUS WDG 0be
Bf RESERVED_1 0 Ox0 0bo

obsid WDW_LIST_CNT_OVF Ox0 0bee
register VDIG_AEB_1 0x1 0bl
setup VDIG_AEB_2 0x1 0bl
‘timecode VDIG_AEB_3 0x1 0bl
> G versions (size=1) VDIG_AEB_4 0x1 0bl
PLL_LOCK Ox0 0be
PLL_VCX0 0x1 0b1
PLL_REF Ox0 0be

NB_PLLPERIOD : 0x8 0b1660

RESERVED_2 Ox0 0be

0bee

EDAC_LIST_CORR_ERR 0 0boee0_00

OPER_MOD 0 0boe
RESERVED_3 b]
Attributes RESERVED b 0000_0000_0000

OUTBUFF_1

OUTBUFF_2

OUTBUFF_3

OUTBUFF_4

OUTBUFF_S

OUTBUFF_&

OUTBUFF_7

OUTBUFF_8

q Quit o Open File... n Next p Previous Ap palette

There are a few other top-level groups and datasets that we will discuss briefly here.

/fee

This dataset contains the type of the FEE, for the fast camera its value is 'F-FEE'. The value is saved
as an attribute with the name 'type'. A similar dataset is present in the HDFS5 files of the N-CAM.
This information is used by the FITS generation.

>>> h5_fd["/fee"].attrs["type'l]
"F-FEE'

/obsid
This dataset contains the OBSID as a bytes object.

>>> h5_fd["/obsid"][...]
array(b'KUL_00030_00121"', dtype=object)

/setup

This dataset contains the Setup ID, in our HDF5 file we were using Setup 30. If you are using the
h5tui, the full hierarchy of the Setup will be presented.

egse.h5
>>> h5_fd["/setup"][...]

array(b'00030', dtype=object)

h5tui

4.2. The format of the HDFS5 files | 27

oo plato-data@screwdriver: ~/git/plato-common-egse

o HDFSBrowser —
¥ HDFS
> G AEB1-F setup-view

[150.0, 1
50

q Quit o Open File... n Next p Previous Ap palette

/timecode

This dataset contains the timecode for this cycle. Remember that the timecode runs from 0 to 63
and is then reset to zero. The /timecode dataset is a one-dimensional numpy array containing the
timecode value. The attribute timestamp refers to the time when the timecode was received by the
DPU Processor.

>>> h5_fd["/timecode"][...]

array(26)

>>> h5_fd["/timecode"].attrs['timestamp"]
'2024-09-11T14:37:47.884+0000"

This concludes our trip trough the F-FEE HDFS file. If you are running the h5tui tool in a terminal that
can handle enough colors, you can inspect the image data also from within this tool by selecting the
data group. In the footer you can see which keys to use for zooming and panning. Pressing 'b' will
zoom into the area with the brightest pixel, pressing '0" will bring you back to a properly zoomed
figure.

plato-data@screwdriver: ~/git/plato-common-egse

HDFSBrowser —
data-view

hk_aeb
hk_deb
commands (size=6)
fee
hk-data (size=5)
obsid
register
setup
‘timecode
versions (size=1)

Attributes

B Zoom to brightest pixel W/t Up S/U Down A/« Left D/» Right q Quit o Open File... n Next p Previous p palette

28 | 4. Data Format

(X)
)
¥ HDF5
¥ G AEB1-F (size=3)

plato-data@screwdriver: ~[git/plato-common-egse

HDFSBrowser —

data-view

>
hk_aeb
hk_deb
> G commands (size=6)
fee
> G hk-data (size=5)
obsid
register
setup
timecode
» G versions (size=1)

Attributes

Zoon to brightest pixel.

B Zoom to brightest pixel W/t Up S/4 Down A/¢ Left D/> Right q Quit o Open File... n Next p s p palette

4.2.4. One more thing

Sometimes, we get a problem in receiving image data packets and the packets we get are corrupt.
Those packets are not saved as part of the data group in the AEB group, but are saved as plain vanilla
SpacellirePacket objects. You can inspect these packets with the h5tui tool. It might be useful to
determine their sequence counter, frame counter, etc.

plato-data@screwdriver: ~/git/plato-common-egse

HDFSBrowser —

spu-view

hk-data (size=5)
obsid
register Logical address : Ox
setup Protocol ID
spw-data (size=2) Data length
D g

1

‘timecode

> G versions (size=1)

, AEB ID:AEB1, Packet Type:DATA_PACKET

Header length
Total length

Packet Data (bytes

0 FO 11 EE 00 00 00 BA 04 6B 00 47
0x03 42 03 48 03 49 03 51 03 4D 03 4D 03 4C 03 4F 03 4D 03 38 03 34 03 32 03 38 03 31 03 33... (actual data length=1175)

q Quit o Open File... n Next p Previous p palette

4.3. Inspecting HDFS files with the toolset from the
CGSE

So far, we have been inspecting the HDF5 files using code entered in the Python REPL. The Common-
EGSE however also provides a nice GUI to visualise all groups, datasets and attributes from the PLATO
HDFS5 files. If you were involved in camera testing, you have probably seen the DPU Image Display
GUI that in real-time updates the image data and other metadata received from the camera. The life

4.3. Inspecting HDFS5 files with the toolset from the CGSE | 29

data is constructed from the SpaceWire data packets on-the-fly, not from an HDFS5 file. An example of
a measurement at CSL during alignment is given in the screenshot below.

eee DPU Image Display

HK Packet
Heg 7] cooxa

ccp #1

x=937,y=515, lux=3802 x=1686,y=2721,lux=4792

cep #2 €3 ceo#3

x=788,y=1544,lux=5189 x=1050,y=2138,lux=5200 x=789,y=2709,flux=4601 x=-808,y=2853, flux=None

Mode Parameters Readout Parameters

N-FEE Mode FULL_IMAGE_MODE Row Start 0

N-FEE Cycle Time 285 Row End 10
- Num Columns 2205

DUMP Mode True Readout Order 0,2,3,4]

Internal Sync. True coD Side BOTH_SIDES

External Sync False Number of Cycles

The same visualisation is provided by the stand-alone application hdf5_ui that can be started from the
terminal. This N-FEE Data Inspector GUI re-uses parts of the code from the DPU Image Display GUI,
only the data that is shown is now read from an HDFS5 file. Let’s explore the functionality provided by
the HDF5 GUI using a dataset that was taken at CSL during Short Functional Tests (SFT), i.e. data taken
with the N-FEE simulator instead of the real instrument. When the GUI starts up, select the dataset '3’
which will show the simulated image data as in the screenshot below.

$ hdf5_ui 20221222_CSL1_N-FEE_SPW_00433.hdf5

eee N-FEE Data Inspector

Type CCD #4

2
5
B

dpu 0 object
obsid 0 object
register (2048,) uint8

versions 1 Group

Properties | Attributes | Packet Header

Name Value
Name <]

Id <hBpyhSg.G...

Now you can start navigating through the data by clicking and unfolding items in the upper-left panel.
The screenshots below show typically some of the actions you can do and what type of data is

30 | 4. Data Format

I
PLATO-KUL-PL-ICD-0002 fg*} KU Leuven

presented.

Screenshot 3 — Image zoom and data attributes Screenshot 4 — Inspection of individual data
packets

Screenshot 1 shows the Register Map for this cycle. There is only one Register Map per HDFS5 file. The
register map is the status at the time the timecode is sent for the first readout frame. Commanding is
possible at the end of any readout, but the changes are only activated in the FPGA on a long pulse of
400ms. That is when also the register map is stored in the HDF5 file. There are two register
parameters'” that are updated on every pulse, long and short pulse. Those parameters are sensor_sel
and ccd_readout_order and because of this more regular update possibility these parameters are also
available as attributes in each of the data groups. So, in principle, the CCD side can be changed at
every readout, and this will be recorded in the sensor_sel attribute to the data group. Above the
register map table, you can see an empty text field. In this field you can type a string pattern to filter
the parameters shown in the table. The string pattern shall be a simple string or a regular expression
and it will match either the register name or the parameter name. For example, to list only
parameters for register '3' enter 'reg_3_config' in this search field, to see all windowing size
parameters you can enter something like win.*size.

Screenshot 2 shows the view of the housekeeping packet for that readout frame. The housekeeping
packet is sent for each sync pulse (long and short) right after the timecode. So, you will find a hk
dataset for each of the readout frames. The housekeeping view currently only shows the data as raw
values, no conversion to engineering values like voltages or temperatures is done at this stage.

Screenshot 3 shows a combination of information. The images are zoomed in to show (1) that we
have 25 serial prescan pixels, these are the pixels before the red line in the left part of the screenshot
(F-side), and (2) we have 30 parallel overscan pixels, above the red horizontal line in the right part of

4.3. Inspecting HDFS files with the toolset from the CGSE | 31

the screenshot (E-side). We can now also clearly see that we have image pattern data (XXXX add
reference here). The cross that is visible in the image data is put there by the N-FEE simulator to ease
the validation of the image coordinates and pixel positions. Clicking the '3' group in the tree view will
show the image data, if you expand the entry by clicking the small handle before the '3', you can then
click the data group. This will not change the image display, but will update the details panel in the
lower-left part of the screenshot. Select 'attributes' to see the specific parameters attached to this 'data’
group.

In Screenshot 4 I have further expanded the data group and the tree view now shows the individual
SpaceWire data packets. If you click on one of them, the content of the packet is printed in different
formats and also the header is printed in a human readable format. The parameter 'w' is the number
of pixels in the data part of the SpW packet. As said above, we have 7 rows per packet » 16065 /7 =
2295, which is the number op pixels per row. This view is mainly there for debugging and can change
in the future.

The hdf5_ui is a Qt5 tool and needs a graphics display server to run. Sometime however you just need
to have a quick look at your HDFS5 file or you are in an ssh session and do not have the opportunity to
start a GUIL In that case, you can use the h5tui tool provided by the CGSE. This is a Text User Interface
(TUI) that allows you to inspect and navigate in an HDF5 file, even show an image of your science data
with zoom and pan functionality. You can start this program in a terminal (also in a ssh session) as
follows, e.g.:

$ h5tui 20240417_IAS_N-FEE_SPW_02303.hdf5

Attributes

TBW

O How can we inspect the content of the data packets — DataPackets class
O Explain when we have a commands group and what it contains

O What is the relation between the number of HDFS5 files and the num_cycles value?

32 | 4. Data Format

PLATO-KUL-PL-ICD-0002

NCw/

KU Leuven

@ How to visualize the HDFS5 files with the GUI hdf5_ui

O Which scripts do we have to inspect and check HDFS5 files?

4.4. The Telemetry (TM) Dictionary

The tm-dicionary.csv file (further referred to as the "telemetry ™ dictionary") provides an overview of
all housekeeping (HK) and metrics parameters in the EGSE system. It is used:

* By the get_housekeeping function (in egse.hk) to know in which file the values of the requested HK
parameter should be looked for;

» To create a translation table to convert — in the get_housekeeping function of the device protocols
— the original names from the device itself to the EGSE-conform name (see further);

* For the HK that should be included in the synoptics: to create a translation table to convert the
original device-specific (but EGSE-conform) names to the corresponding synoptical name in the
Synoptics Manager (in egse.synoptics).

4.4.1. The File’s Content

For each device we need to add all HK parameters to the TM dictionary. For each of these parameters
you need to add one line with the following information (in the designated columns):

Column name

TM source

Storage mnemonic

CAM EGSE mnemonic

Original name in EGSE

Name of corresponding
timestamp

Origin of synoptics at
CSL

Expected content

Arbitrary (but clear) name for the device. Ideally this name is short but
clear enough for outsiders to understand what the device/process is for.

Storage mnemonic of the device. This will show up in the filename of the
device HK file and can be found in the settings file (settings.yaml) in the
block for that specific device/process.

EGSE-conform parameter name (see next Sect.) for the parameter. Note that
the same name should be used for the HK parameter and the
corresponding metrics.

In the get_housekeeping method of the device protocols, it is - in some cases
(e.g. for the N-FEE HK) - possible that you have a dictionary with all/most of
the required HK parameters, but with a non-EGSE-conform name. The
latter should go in this column.

In the device HK files, one of the columns holds the timestamp for the
considered HK parameter. The name of that timestamp column should go
in this column of the TM dictionary.

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the CSL-specific HK file comprising this HK parameter. Leave
empty for all other devices!

4.4. The Telemetry ™ Dictionary | 33

KU Leuven

Column name

Origin of synoptics at

SRON

Origin of synoptics at

IAS

Origin of synoptics at

INTA

Description
MON screen

unit call

offset b call

slope a call

calibration function

MAX nonops

MIN nonops

MAX ops

MIN ops

Comment

PLATO-KUL-PL-ICD-0002

NCw/

Expected content

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the SRON-specific HK file comprising this HK parameter.
Leave empty for all other devices!

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the IAS-specific HK file comprising this HK parameter. Leave
empty for all other devices!

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the INTA-specific HK file comprising this HK parameter.
Leave empty for all other devices!

Short description of what the parameter represents.
Name of the Grafana dashboard in which the parameter can be inspected.

Unit in which the parameter is expressed. Try to be consistent in the use of
the names (e.g. Volts, Ampeére, Seconds, Degrees, DegCelsius, etc.).

For raw parameters that can be calibrated with a linear relationship, this
column holds the offset b in the relation calibrated = a * raw + b.

For raw parameters that can be calibrated with a linear relationship, this
column holds the slope a in the relation calibrated = a * raw + b.

Not used at the moment. Can be left emtpy.

Maximum non-operational value. Should be expressed in the same unit as
the parameter itself.

Minimum non-operational value. Should be expressed in the same unit as
the parameter itself.

Maximum operational value. Should be expressed in the same unit as the
parameter itself.

Minimum operational value. Should be expressed in the same unit as the
parameter itself.

Any additional comment about the parameter that is interesting enough to
be mentioned but not interesting enough for it to be included in the
description of the parameter.

Since the TM dictionary grows longer and longer, the included devices/processes are ordered as
follows (so it is easier to find back the telemetry parameters that apply to your TH):

* Devices/processes that all test houses have in common: AEU, N-FEE, TCS, Synoptics Manager, etc.

Devices that are CSL-specific;

Devices that are SRON-specific;

* Devices that are IAS-specific;

34 | 4. Data Format

PLATO-KUL-PL-ICD-0002

NCw/

KU Leuven

 Devices that are INTA-specific.

4.4.2. EGSE-Conform Parameter Names

The correct (i.e. EGSE-conform) naming of the telemetry should be taken care of in the
get_housekeeping method of the device protocols.

Common Parameters

A limited set of devices/processes is shared by (almost) all test houses. Their telemetry should have the
following prefix:

Device/process Prefix
Configuration Manager CM_
AEU (Ancillary Electrical Unit) GAEU_

N-FEE (Normal Front-End Electronics) NFEE_

TCS (Thermal Control System) GTCS_
FOV (source position) FOV_
Synoptics Manager GSYN_

TH-Specific Parameters

Some devices are used in only one or two test houses. Their telemetry should have TH-specific prefix:

TH Prefix
CSL GCSL_
CSL1 GCSL1_
CSL2 GCSL2_
SRON GSRON_
IAS GIAS_
INTA GINTA_
4.4.3. Synoptics

The Synoptics Manager groups a pre-defined set of HK values in a single file. It’s not the original EGSE-
conform names that are use in the synoptics, but names with the prefix GSYN_. The following
information is comprised in the synoptics:

* Acquired by common devices/processes:

* Calibrated temperatures from the N-FEE;

* Calibrated temperatures from the TCS;

» Source position (commanded + actual).

4.4. The Telemetry ™ Dictionary | 35

KU Leuven

NCw/

PLATO-KUL-PL-ICD-0002

* Acquired by TH-specific devices:
* Calibrated temperatures from the TH DAQs;
* Information about the OGSE (intensity, lamp and laser status, shutter status, measured power).

For the first type of telemetry parameters, their original EGSE-conform name should be put into the
column CAM EGSE mnemonic, as they are not TH-specific.

The second type of telemetry parameters is measured with TH-specific devices. The original TH-
specific EGSE-conform name should go in the column Origin of synoptics at

4.4.4. Translation Tables

The translation tables that were mentioned in the introduction, can be created by the
read_conversion_dict function in egse.hk. It takes the following input parameters:

* storage_mnemonic: Storage mnemonic of the device/process generating the HK;

» use_site: Boolean indicating whether you want the translation table for the TH-specific telemetry

rather than the common telemetry (False by default).

To apply the actual translation, you can use the convert_hk_names function from egse.hk, which takes
the following input parameters:
* original_hk: HK dictionary with the original names;

» conversion_dict: Conversion table you got as output from the read_conversion_dict function.

4.4.5. Sending HK to Synoptics
When you want to include HK of your devices, you need to take the following actions:

* Make sure that the TM dictionary is complete (as described above);
¢ In the device protocol:

o At initialisation: establish a connection with the Synoptics Manager: self.synoptics =
SynopticsManagerProxy()

o In get_housekeeping (both take the dictionary with HK as input):
= For TH-specific HK: self.synoptics.store_th_synoptics(hk_for_synoptics);

= For common HK: self.synoptics.store_common_synoptics(hk_for_synoptics).

Please, do not introduce new synoptics without further discussion!

4.5. The format of the CSV data files

All regular housekeeping is stored in CSV files by the storage manager. This section will describe the
general format of the CSV files and more detailed information on the content for a number of specific
files. For an in-depth description of where, when and how the CSV files are created, have a look into
the developer manual, section XXXXX.

36 | 4. Data Format

ava\

NCw/

PLATO-KUL-PL-ICD-0002 KU Leuven

The CSV files are comma (',") separated and have a one-line header that contains the column names.
All CSV files have at least one mandatory column, which is the 'timestamp' column. This column holds
the timestamp of the data in that row and has the following format YYYY-mm-ddTHH:MM:SS.ps+0000. Note
that the order of the columns is undetermined and the timestamp column is therefore not always the
first column. When reading and processing the CSV files, use the column name instead of the column
index.

The CVS file can be read with the Pandas read_csv() function. That will read all the housekeeping data
into a Pandas DataFrame.

import pandas as pd
df = pd.read_csv(filename)

The timestamp string can be parsed into a datetime object with the format %Y-%m-%dT%H: %M:%S.%f%z (see
format-codes for an explanation of the format).

import datetime
TIME_FORMAT = '%Y-%m-%dT%H:%M:%S.%f%z"
dt = datetime.datetime.strptime(dt_string, TIME_FORMAT)

The CGSE has a function defined in the egse.system module that does this for you consistently. Note
that the format_datetime() is the function used to create the timestamp string for the CSV file.

from egse.system import format_datetime, str_to_datetime
dt = str_to_datetime(format_datetime())

The time resolution of the timestamps is 1us and the timezone is UTC.

If you need to convert the timestamp into a unix timestamp, use the following code:

ts = str_to_datetime(format_datetime()).timestamp()

This will return a float similar to that returned by time.time().

4.5.1. The Device Housekeeping

TBW

4.5.2. The N-FEE Housekeeping

The N-FEE sends out a housekeeping packet on every sync pulse, right after it sends the timecode. This
housekeeping packet contains temperature sensor values, voltages, currents, some status parameters
and error codes. Sensor values, voltages and currents are raw measures and are converted into
calibrated values by the n_fee_hk process. The conversion is defined in the Setup for that camera (in
the setup.camera.fee.calibration entry).

All raw and calibrated housekeeping values are stored in the N-FEE-HK CSV file. There are currently

4.5. The format of the CSV data files | 37

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes
https://docs.python.org/3/library/time.html#time.time

ava\

NCw/

KU Leuven PLATO-KUL-PL-ICD-0002

about 154 columns in that file. The timestamp of each row is the reception time of the HK packet by
the DPU Processor.

Actually, since release 2023.20.0+CGSE of the Common-EGSE, there are two rows of HK values per
timecode. The DPU Processor requests all HK data from the N-FEE immediately after receiving the
image data from the N-FEE and before sending any RMAP requests. Even if no image data is
generated, e.g. in STANDBY or DUMP mode, the additional updated housekeeping is requested. This
additional information is needed because the housekeeping contains information, especially error
codes, on the readout and data transfer. Also interesting to know is that the first housekeeping packet
sent by the N-FEE contains information about the previous readout, while the updated HK data that
was requested from the N-FEE contains information about the current readout.

4.5.3. The Synoptics Housekeeping

TBW

[1] Format version 2.6 was introduced on 18/03/2024, in release 2024.13.0+CGSE

[2] There are actually more register parameters that are updated on every sync pulse, but those are all windowing parameters
that are not used in camera testing.

38 | 4. Data Format

ava\

PLATO-KUL-PL-ICD-0002

NCw/

KU Leuven

5. The OBSID Table file

The obsid-table.txt file contains an ordered list of all observations that are started. I say started and
not run because the list also contains observations that were interrupted due to an exception or for
whatever reason.

Each line in the file describes one observation with the following fields: test_id, site_id, setup_id,
timestamp, function, and description. The fields are separated by a space, but a simple split will not
work" because of (1) the 'function’ field that also contains spaces between the arguments and (2) the
'description' field.

Field name Description

test_id The test_id is a successive number that is assigned to each test and is
unique for each site.

site_id The name of the site, or test house where this observation ran. For CSL the
site_id represents the cleanroom and has a number attached to identify the
room, i.e. CSL1 and CSL2.

setup_id The identifier of the Setup that was active during the observation. The
Setup can not be changed when an observation is running, so each
observation has one Setup ID only.

timestamp The timestamp of the start of an observation. This timestamp has the
format YYYY-mm-ddTHH:MM:SS. ps+0000 and is a UTC time.

function The function that was executed including a stringification of the
arguments. When the observation is started and ended with the
start__observation() and end_observation() functions, no function is
identified since any python code between the two marker functions is part
of the observation. In this case, the field contains unknown_function().

description This last field is optional and contains a description for the observation.
The description is provided by either the developer of a building block, or
the user. The description parameter is a keyword argument for both the
start_observation() and the execute() functions. The description field is
always enclosed within square brackets, i.e. '[description]'".

The fields test_id, site_id, and setup_id together form the observation identifier, i.e. 0BSID.

[1] Because of this we are rethinking the format and content of the obsid-table.txt file, see e.g. TS issue #1002.

5. The OBSID Table file | 39

https://github.com/IvS-KULeuven/plato-test-scripts/issues/1002

KU Leuven

NCw/

PLATO-KUL-PL-ICD-0002

6. List of Files

This section will list all files that are relevant for the proper working of the Common-egse (CGSE) and
test scripts (TS).

The configuration files are described in [XXXXX]. The data files are described in the previous sections.

Filename Description Location

obsid-table.txt g sorted list of all observations that have been data storage location, inside
started with start_observation or the execute <site> folder
command.

last_setup_id. contains just one integer, i.e. the last Setup ID that data storage location, inside

was/is loaded in the configuration control <site> folder
manager. The file is used by the cm_cs when
restarted.
hdf5_queue a directory containing an SQLite database with data storage location, inside

processed and to-be-processed HDFS5 files, used by <site> folder
the FITS generation.

startup.py a Python startup file loaded when a Python installation folder of the project,
session is started or when the Jupyter kernel is usually ~/git/plato-common-egse
started from the Operator Task GUIL There is such or ~/git/plato-test-scripts.
a file for the CGSE and for the test scripts. This
requires the PYTHONSTARTUP environment
variable to be defined.

env.txt contains the definitions of all environment the location is set by the
variables that are required by the core services EnvironmentFile variable in the
when they are started by Systemd. service file, default location is
/cgse.
local_settings. contains the local site-specific settings that set by the PLATO_LOCAL_SETTINGS
yaml overwrite environment variable, usually
/cgse.
bbid.yaml contains the MD5 sums for all the building blocks. in the folder where the

This file is dynamically updated, but not used yet. camtest.core is located, usually
The idea was to have a unique identifier for all ~ ~/9it/plato-test-

building block regardless where they are scripts/src/camtest/core.
crated/defined.

40 | 6. List of Files

	Common-EGSE : Interface Control Document
	Table of Contents
	Changelog
	Colophon
	Conventions used in this Book
	1. TODO
	2. Introduction
	3. Software Interfaces
	3.1. The Storage Data Interface

	4. Data Format
	4.1. The format of the FITS files
	4.2. The format of the HDF5 files
	4.3. Inspecting HDF5 files with the toolset from the CGSE
	4.4. The Telemetry (TM) Dictionary
	4.5. The format of the CSV data files

	5. The OBSID Table file
	6. List of Files

