
Common–EGSE
Developer Manual

Rik Huygen, Sara Regibo

Version 1.12, 08/10/2024

Table of Contents
Changelog . 1

Colophon . 2

Conventions used in this Book . 3

Contributors . 5

Preface . 6

Introduction . 7

Documents and Acronyms . 9

Applicable documents . 9

Reference Documents . 9

Acronyms . 9

Caveats . 12

Setup . 12

Part I — Development Notions. 13

1. Style Guide . 14

1.1. TL;DR . 14

1.2. General . 14

1.3. Classes . 14

1.4. Methods and Functions. 15

1.5. Variables . 15

1.6. CONSTANTS . 15

1.7. Modules and Packages . 15

1.8. Import Statements . 16

2. Version numbers . 17

3. Best Practices for Error and Exception Handling. 19

3.1. When do I catch exceptions? . 19

3.2. How do I catch Exceptions? . 19

3.3. What about the 'with' Statement? . 20

3.4. Why not just return an error code? . 21

3.5. When to Test instead of Try? . 21

3.6. When to re-throw an Exception? . 22

3.7. What about Performance? . 22

3.8. Can I raise my own Exception? . 23

3.9. When should I use Assertions? . 24

3.10. What are Errors? . 24

3.11. Cascading Exceptions . 25

3.12. Logging Exceptions . 25

3.13. Resources . 25

4. Writing docstrings . 26

4.1. What needs to go into the docstring and what not?. 26

4.2. Where will the docstring show up? . 27

Part II — Core Concepts . 28

5. Core Services . 29

5.1. The Log Manager . 29

5.2. The Configuration Manager. 29

5.3. The Storage Manager. 29

5.4. The Data Dumper . 30

5.5. The Process Manager. 34

5.6. The Synoptics Manager . 34

5.7. The Telemetry (TM) Dictionary. 35

6. The Commanding Concept . 40

6.1. The Control Server . 40

6.2. The Proxy Class . 43

6.3. The Protocol Class. 43

6.4. Services . 44

6.5. Response, Failure, Success . 45

6.6. Dynamic Commanding . 45

7. Notifications for Control Servers . 52

7.1. The Event . 52

7.2. The Listener . 53

7.3. The Event Generator . 53

7.4. The Service Protocol . 54

7.5. Scheduled Tasks . 54

7.6. The Notification Process . 55

7.7. The Configuration Manager. 55

7.8. The Storage Manager. 56

7.9. The Dummy Control Server . 56

7.10. Adding event handling to a control server . 57

8. The Setup . 58

8.1. What is the Setup? . 58

8.2. What goes into the Setup? . 59

8.3. How to use the Setup . 60

8.4. How to create and manage Setups . 60

9. The Settings Class . 62

10. The GlobalState. 64

10.1. Singleton versus Shared State . 64

10.2. What is in the GlobalState? . 64

11. Data Strategy . 67

12. Date, Time and Timestamps . 68

12.1. Formatting the date and time . 68

Part III — Device Commanding . 69

13. Device Control Servers . 70

13.1. The Device Interface Classes . 70

14. The System Under Test (SUT). 73

14.1. DPU Control Server and DPU Processor . 73

14.2. The N-FEE Simulator . 78

14.3. CCD Numbering . 78

14.4. The F-FEE Simulator . 83

15. SpaceWire . 84

15.1. The SpaceWire Lab Interface – Hardware . 84

15.2. The SpaceWire Interface class – Software . 85

15.3. Testing your connection . 86

15.4. The RMAP Protocol . 86

15.5. A more elaborate example. 87

16. Device Simulators . 88

16.1. The OGSE Simulator . 88

Part IV — Essential Toolkit and Infrastructure Elements . 90

17. Essential Toolkit . 91

17.1. The NavigableDict class . 91

17.2. The SubProcess class . 92

17.3. The ProcessStatus class . 92

17.4. The RegisterMap. 92

18. Infrastructure Elements . 93

18.1. Bits, Bytes and Hex. 93

18.2. Reloading functions and modules . 93

18.3. Time and Timing . 93

18.4. Resources . 93

Part V — Monitoring. 94

19. Metrics, Prometheus and Grafana . 95

19.1. Setup Prometheus . 95

19.2. Define your metrics . 95

Part VI — Test Scripts . 97

20. Observations . 98

21. Building Blocks . 99

22. The Tasks GUI . 102

22.1. The package Layout. 104

22.2. Defining a Task . 104

22.3. The @exec_ui decorator . 107

22.4. Type Hints and Defaults . 107

22.5. Choosing your icons . 108

22.6. The Jupyter Kernels . 108

22.7. Running your tasks . 108

22.8. The __init__.py. 108

Part VII — Unit Testing and beyond . 109

23. The Test Suite . 110

24. Testing device Interfaces . 111

25. Code Reviews . 112

25.1. Who is part of this Code Review?. 112

25.2. Planning . 113

25.3. What needs to be reviewed? . 113

25.4. Prerequisites . 114

Part VIII — Miscellaneous. 115

26. Set up your development environment . 116

26.1. Create a GitHub account and request access. 116

26.2. Fork the repositories on GitHub. 116

26.3. Clone GitHub repository. 117

26.4. Set up the environment variables . 117

26.5. Create a Python virtual environment . 118

26.6. Install the CGSE. 118

26.7. Start the core services. 119

26.8. Updating the CGSE and TS . 120

27. Terminal Commands. 122

27.1. What goes into this section . 122

27.2. Often used terminal commands . 122

27.3. Often used git commands. 123

28. Stories . 125

28.1. Seemingly unrelated Process Manager Crash. 125

28.2. A non-closed socket is deeply buried in the code. 127

29. Miscellaneous . 129

30. System Configuration . 130

30.1. System Components . 130

30.2. Data Flows . 130

31. Installation and Update . 132

32. Getting Started . 133

32.1. Log on to the System . 133

32.2. Setting up the development environment . 133

Index . 134

Changelog
08/10/2024 — v1.12

• Added a section on the data dumper, see Section 5.4

06/09/2024 — v1.11

• Filled the section on writing docstrings, see Chapter 4.

06/03/2024 — v1.10

• Added a story about finding a left-open socket… see Chapter 28.

27/02/2024 — v1.9

• Added part on Essential Toolkit and Infratsructure Elements, see Chapter 17 and Chapter 18.

• Added some more info on Setup in Chapter 8.

12/02/2024 — v1.8

• Started a chapter on SpaceWire communication, see Chapter 15.

• Added a chapter on the notification system for control servers, see Chapter 7.

18/06/2023 — v1.7

• Added a section on setting up a development environment to contribute to the CGSE and/or TS,
see Chapter 26.

• added a backlink to the CGSE Documentation web site for your convenience. It’s at the top of
the HTML page.

04/05/2023 — v1.6

• Added explanation about data distribution and monitoring message queues used by the DPU
Processor to publish information and data, see Chapter 14.

• Added some more meat into the description of the arguments for the @dynamic_command
decorator, see Section 6.6.2.

• Added an explanation of the communication with and commanding of the N-FEE in the inner
loop of the DPUProcessor, see Section 14.1.1.

03/04/2023 — v1.5

• Added a section 'Services' in the Commanding Concepts section, see Section 6.4.

12/03/2023 — v1.4

• Added description of the arguments that can be used with the @dynamic_command decorator, see
Section 6.6.2.

• Added a section on creating multiple control servers for identical devices, see Section 6.1.1.

09/02/2023 — v1.3

• Updated section on version and release numbers, see Chapter 2.

• Fixed some formatting issues in the CCD numbering section.

PLATO-KUL-PL-MAN-0003 KU Leuven

Changelog | 1

Colophon
Copyright © 2022, 2023 by the KU Leuven PLATO CGSE Team

1st Edition — February 2023

This manual is written in PyCharm using the AsciiDoc plugin. The PDF Book version is processed with
asciidoctor-pdf.

The manual is available as HTML from ivs-kuleuven/github.io. The HTML pages are generated with
Hugo which is an OSS static web-pages generator. From this site, you can also download the PDF
books.

The source code is available in a GitHub repository at ivs-kuleuven/plato-cgse-doc.

When you find an error or inconsistency or you have some improvements to the text, feel free to raise
an issue or create a pull request. Any contribution is greatly appreciated and will be mentioned in the
acknowledgement section.

KU Leuven PLATO-KUL-PL-MAN-0003

2 | Colophon

http://ivs-kuleuven.github.io/plato-cgse-doc
https://github.com/ivs-kuleuven/plato-cgse-doc

Conventions used in this Book
We try to be consistent with the following typographical conventions:

Italic

Indicates a new term or …

Constant width

Used for code listings, as well as within paragraphs to refer to program elements like variable and
function names, data type, environment variables (ALL_CAPS), statements and keywords.

Constant width between angle brackets <text>

Indicates text that should be replaced with user-supplied values or by values determined by
context. The brackets should thereby be omitted.

When you see a $ … in code listings, this is a command you need to execute in a terminal (omitting
the dollar sign itself). When you see >>> … in code listings, that is a Python expression that you need
to execute in a Python REPL (here omitting the three brackets).

Setup versus setup

I make a distinction between Setup (with a capital S) and setup (with a small s). The Setup is used
when I talk about the object as defined in a Python environment, i.e. the entity itself that contains
all the definitions, configuration and calibration parameters of the equipment that make up the
complete test setup (notice the small letter 's' here).

(sometimes you may find setup in the document which really should be 'set up' with a space)

Using TABs

Some of the manuals use TABs in their HTML version. Below, you can find an example of tabbed
information. You can select between FM and EM info and you should see the text change with the
TAB.

This feature is only available in the HTML version of the documents. If you are
looking at the PDF version of the document, the TABs are shown in a frame where
all TABs are presented successively.

FM

In this TAB we present FM specific information.

EM

In this TAB we present EM specific information.

Using Collapse

Sometimes, information we need to display is too long and will make the document hard to read.
This happens mostly with listings or terminal output and we will make that information
collapsible. By default, the info will be collapsed, press the small triangle before the title (or the

PLATO-KUL-PL-MAN-0003 KU Leuven

Conventions used in this Book | 3

title itself) to expand it.

 In the PDF document, all collapsible sections will be expanded.

▼ A collapsible listing

plato-data@strawberry:/data/CSL1/obs/01151_CSL1_chimay$ ls -l
total 815628
-rw-r--r-- 1 plato-data plato-data 7961 Jun 20 10:38 01151_CSL1_chimay_AEU-AWG1_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 9306 Jun 20 10:38 01151_CSL1_chimay_AEU-AWG2_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 309375 Jun 20 10:38 01151_CSL1_chimay_AEU-CRIO_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42950 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU1_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 43239 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU2_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42175 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU3_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42327 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU4_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42242 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU5_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42269 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU6_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 67149 Jun 20 10:38 01151_CSL1_chimay_CM_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 20051 Jun 20 10:38 01151_CSL1_chimay_DAQ6510_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 105 Jun 20 10:38 01151_CSL1_chimay_DAS-DAQ6510_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19721 Jun 20 10:38 01151_CSL1_chimay_DPU_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 22833 Jun 20 10:38 01151_CSL1_chimay_FOV_20230620_095819.csv
-rw-rw-r-- 1 plato-data plato-data 833754240 Jun 20 10:34 01151_CSL1_chimay_N-FEE_CCD_00001_20230620_cube.fits
-rw-r--r-- 1 plato-data plato-data 292859 Jun 20 10:38 01151_CSL1_chimay_N-FEE-HK_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 8877 Jun 20 10:38 01151_CSL1_chimay_OGSE_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19841 Jun 20 10:38 01151_CSL1_chimay_PM_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 188419 Jun 20 10:38 01151_CSL1_chimay_PUNA_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 7662 Jun 20 10:38 01151_CSL1_chimay_SMC9300_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19781 Jun 20 10:38 01151_CSL1_chimay_SYN_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 147569 Jun 20 10:38 01151_CSL1_chimay_SYN-HK_20230620_095819.csv
plato-data@strawberry:/data/CSL1/obs/01151_CSL1_chimay$

KU Leuven PLATO-KUL-PL-MAN-0003

4 | Conventions used in this Book

Contributors
Name Affiliation Role

Rik Huygen KU Leuven Software architect

Sara Regibo KU Leuven Senior software engineer and
EGSE expert

Pierre Royer KU Leuven Instrument expert

Sena Gomashie SRON EGSE expert at test house

Jens Johansen SRON EGSE expert at test house

Nicolas Beraud IAS EGSE expert at test house

Pierre Guiot IAS EGSE expert at test house

Angel Valverde INTA EGSE expert at test house

Jesus Saiz INTA EGSE expert at test house

PLATO-KUL-PL-MAN-0003 KU Leuven

Contributors | 5

Preface
During the development/implementation process it became clear that the project was bigger then we
anticipated and we would need to document how the Common-EGSE developed into this full-blown
product.

During the analysis, design and implementation phase we learned about so many libraries like
ZeroMQ, Matplotlib, Numpy, Pandas, Rich, Textual, … but also the standard Python library is so
extremely rich of well-designed modules and language concepts that we integrated into our design
and implementation.

Many of the applied concepts might seem obvious for the core developers of a/this product, but it
might not be for the contributors of e.g. device drivers. A full in-depth description of the system and
how it was developed is therefore indispensable.

The text itself gruw over the years, it started in reStructuredText and was processed with Sphinx, then
we moved to Markdown and Mkdocs because of its simplicity and thinking this would encourage us to
write and update the text more often. Finally, we ended up using Asciidoc which is a bit of a
compromise between the previous two.

KU Leuven PLATO-KUL-PL-MAN-0003

6 | Preface

Introduction
This document is the developer guide for the PLATO Common-EGSE, used at CSL (Liège, Belgium) and
the test houses at IAS (Paris, France), INTA (Madrid, Spain) and SRON (Groningen, The Netherlands)
and describes the Common-EGSE system from the developer’s point of view. This document explains
how to contribute to the code, which versions of libraries that are used, compiler options for device
libraries written in C, access to the GitHub repo, coding style,and much more.

The current release contains 303 Python files, together they contain 95389 lines of which there are
49360 lines of Python code. About 50% of the code files contain actual code, the rest is documentation,
comments and blank lines. It is impossible for one person to fully understand all details of the system
and only for that reason is it essential to have good and comprehensive documentation.

Please, read the installation instructions to know how to install the software and configure your
Python installation.

List of TODO topics
☐ List the terminal commands in a simple overview table or something

☐ Explain System Preferences in the settings.yaml file (and the local settings)

☐ The Logger uses ZeroMQ to pass messages. That means these this ZeroMQ needs to be closed when
your application ends.

☐ Where do we descibe the Synoptics Manager, where does this process fit into the design fiures etc.

☐ Somewhere we need to describe all the modules in the CGSE. For example, the device.py module
defines a lot of interesting classes, including Exceptions, the device connection interfaces, and the
device transport.

☐ Somewhere it shall be clearly explained where all these processes need to be started, on the egse-
server or egse-client, manually or by Systemd, … or clicking an icon?

☑ Should we maybe divide the developer manual in part 1 with coding advice and part 2 with the
description of the CGSE code?

☐ Explain how the Failure — Success — Response classes work

☐ Explain how you can run the GUIs and even some control servers on your local machine using
port forwarding. As an example, use the TCS or the Hexapod. This is only for hardware device
connections, it is not for core services, run them as normal on your local machine.

☐ Find better names for the Parts in the manual

☐ WHere do we discuss devices with Ethernet interfaces and USB interfaces, the differences, the
pros and cons, are there other still in use, like GPIO?

☐ Describe how to detect which process is holding a connection on Linux and macOS. This happens
sometimes when a process crashes or when the developer did not properly close all connection, or
when a process is hanging. You will get a OSError: [Errno 48] Address already in use.

☐ Describe the RegisterMap of the N-FEE and how and when it is synced with the DPU Processor.
What is the equivalent of the FPGA (loading the Registers on every long pulse) in the DPU

PLATO-KUL-PL-MAN-0003 KU Leuven

Introduction | 7

installation-manual.html

Processor (DPU Internals vs NFEEState).

☐ Describe what the num_cycles parameter is and how this is used in the DPU Processor. That this
parameter can be negative and what this means and why this decision (to not have too many if
statements in the run() of the DPU Processor.)

☐ Describe that the DPU Processor is time critical

☐ Describe why certain control servers start a sub-process → TCS, DPU, …

☐ Describe how to switch your development environment from one TH to another, e.g. CSL1 → CSL2.
Which environment variables need to be adapted, which directories need to exist etc.

KU Leuven PLATO-KUL-PL-MAN-0003

8 | Introduction

Documents and Acronyms

Applicable documents
[AD-01] PLATO Common-EGSE Requirements Specification, PLATO-KUL-PL-RS-0001, issue 1.4,

18/03/2020

[AD-02] PLATO Common-EGSE Design Description, PLATO-KUL-PL-DD-0001, issue 1.2,
13/03/2020

[AD-03] PLATO Common-EGSE Interface Control Document, PLATO-KUL-PL-ICD-0002, issue
0.1, 19/03/2020

Reference Documents
[RD-01] PLATO Common-EGSE Installation Guide, PLATO-KUL-PL-MAN-0002

[RD-02] PLATO Common-EGSE User Manual, PLATO-KUL-PL-MAN-0001

[RD-03] Common-EGSE on-line Documentation

[RD-04] Ground Tests Commanding Manual

Acronyms

AEU Ancillary Electronics Unit

API Application Programming Interface

CAM Camera

CCD Charged-Coupled Device

CGSE Common-EGSE

CSL Centre Spatial de Liège

CSV Comma-Separated Values

COT Commercial off-the-shelf

CTI Charge Transfer Inefficiency

CTS Consent to Ship

DPU Data Processing Unit

DSI Diagnostic SpaceWire Interface

EGSE Electrical Ground Support Equipment

EOL End Of Life

FAQ Frequently Asked Questions

FEE Front End Electronics

PLATO-KUL-PL-MAN-0003 KU Leuven

Applicable documents | 9

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/installation-manual.html
https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/user-manual.html
https://ivs-kuleuven.github.io/plato-cgse-doc
https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/commanding-manual.html

FITS Flexible Image Transport System

FPA Focal Plane Assembly/Array

GSE Ground Support Equipment

GUI Graphical User Interface

HDF5 Hierarchical Data Format version 5 (File format)

HK Housekeeping

IAS Institut d’Astrophysique Spatiale

ICD Interface Control Document

LDO Leonardo space, Italy

MGSE Mechanical Ground Support Equipment

MMI Man-Machine Interface

NCR Non-Conformance Report

NRB Non-Conformance Review Board

OBSID Observation Identifier

OGSE Optical Ground Support Equipment

OS Operating System

PDF Portable Document Format

PID Process Identifier

PLATO PLAnetary Transits and Oscillations of stars

PPID Parent Process Identifier

PLM Payload Module

PVS Procedure Variation Sheet

REPL Read-Evaluate-Print Loop, e.g. the Python interpreter prompt

RMAP Remote Memory Access Protocol

SFT Short Functional Test

SpW SpaceWire

SQL Structured Query Language

SRON Stichting Ruimte-Onderzoek Nederland

SUT System Under Test

SVM Service Module

TBC To Be Confirmed

TBD To Be Decided or To Be Defined

TBW To Be Written

TC Telecommand

KU Leuven PLATO-KUL-PL-MAN-0003

10 | Documents and Acronyms

TCS Thermal Control System

TH Test House

TM Telemetry

TOU Telescope Optical Unit

TS Test Scripts

TUI Text-based User Interface

TV Thermal Vacuum

UM User Manual

USB Universal Serial Bus

YAML YAML Ain’t Markup Language

PLATO-KUL-PL-MAN-0003 KU Leuven

Acronyms | 11

Caveats
Place general warnings here on topics where the user might make specific assumption on the code or
the usage of the code.

Setup

1. It’s not a good idea to create keys with spaces and special characters, although it is allowed in a
dictionary and it works without problems, the key will not be available as an attribute because it
will violate the Python syntax.

>>> from egse.setup import Setup
>>> s = Setup()
>>> s["a key with spaces"] = 42
>>> print(s)
NavigableDict
└── a key with spaces: 42
>>> s['a key with spaces']
42
>>> s.a key with spaces
 Input In [18]
 s.a key with spaces
 ^
SyntaxError: invalid syntax

2. When submitting a Setup to the configuration manager, the Setup is automatically pushed to the
GitHub repository with the message provided with the submit_setup() function. No need anymore
to create a pull request. There are however two thing to keep in mind here:

a. do not add a Setup manually to your PLATO_CONF_FILE_LOCATION or to the repository. That
will invalidate the repo and the cache that is maintained by the configuration manager

b. you should do a git pull regularly on your local machine and also on the egse-client if the
folder is not NFS mounted

KU Leuven PLATO-KUL-PL-MAN-0003

12 | Caveats

Part I — Development Notions

PLATO-KUL-PL-MAN-0003 KU Leuven

| 13

1. Style Guide
This part of the developer guide contains instructions for coding styles that are adopted for this
project.

The style guide that we use for this project is PEP8. This is the standard for Python code and all IDEs,
parsers and code formatters understand and work with this standard. PEP8 leaves room for project
specific styles. A good style guide that we can follow is the Google Style Guide.

The following sections will give the most used conventions with a few examples of good and bad.

1.1. TL;DR

Type Style Example

Classes CapWords ProcessManager, ImageViewer, CommandList,
Observation, MetaData

Methods & Functions lowercase with
underscores

get_value, set_mask, create_image

Variables lowercase with
underscores

key, last_value, model, index, user_info

Constants UPPERCASE with
underscores

MAX_LINES, BLACK, COMMANDING_PORT

Modules & packages lowercase no
underscores

dataset, commanding, multiprocessing

1.2. General
• name the class or variable or function with what it is, what it does or what it contains. A variable

named user_list might look good at first, but what if at some point you want to change the list to a
set so it can not contain duplicates. Are you going to rename everything into user_set or would
user_info be a better name?

• never use dashes in any name, they will raise a SyntaxError: invalid syntax.

• we introduce a number of relaxations to not brake backward compatibility for the sake of a
naming convention. As described in A Foolish Consistency is the Hobgoblin of Little Minds:
Consistency with this style guide is important. Consistency within a project is more important.
Consistency within one module or function is the most important. […] do not break backwards
compatibility just to comply with this PEP!

1.3. Classes
Always use CamelCase (Python uses CapWords) for class names. When using acronyms, keep them all
UPPER case.

• class names should be nouns, like Observation

KU Leuven PLATO-KUL-PL-MAN-0003

14 | 1. Style Guide

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html
https://legacy.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds

• make sure to name classes distinctively

• stick to one word for a concept when naming classes, i.e. words like Manager or Controller or
Organizer all mean similar things. Choose one word for the concept and stick to it.

• if a word is already part of a package or module, don’t use the same word in the class name again.

Good names are: Observation, CalibrationFile, MetaData, Message, ReferenceFrame, URLParser.

1.4. Methods and Functions
A function or a method does something (and should only do one thing, SRP=Single Responsibility
Principle), it is an action, so the name should reflect that action.

Always use lowercase words separated with underscores.

Good names are: get_time_in_ms(), get_commanding_port(), is_connected(), parse_time(), setup_mask().

When working with legacy code or code from another project, names may be in camelCase (with the
first letter a lower case letter). So we can in this case use also getCommandPort() or isConnected() as
method and function names.

1.5. Variables
Use the same naming convention as functions and methods, i.e. lowercase with underscores.

Good names are: key, value, user_info, model, last_value

Bad names: NSegments, outNoise

Take care not to use builtins: list, type, filter, lambda, map, dict, …

Private variables (for classes) start with an underscore: _name or _total_n_args.

In the same spirit as method and function names, the variables can also be in camelCase for specific
cases.

1.6. CONSTANTS
Use ALL_UPPER_CASE with underscores for constants. Use constants always within a name space, not
globally.

Good names: MAX_LINES, BLACK, YELLOW, ESL_LINK_MODE_DISABLED

1.7. Modules and Packages
Use simple words for modules, preferably just one word like datasets or commanding or storage or
extensions. If two words are unavoidable, just concatenate them, like multiprocessing or sampledata or
testdata. If needed for readability, use an underscore to separate the words, e.g. image_analysis.

PLATO-KUL-PL-MAN-0003 KU Leuven

1.4. Methods and Functions | 15

1.8. Import Statements
• group and sort import statements

• never use the form from <module> import *

• always use absolute imports in scripts

Be careful that you do not name any modules the same as a module in the Python standard library.
This can result in strange effects and may result in an AttributeError. Suppose you have named a
module math in the egse directory and it is imported and used further in the code as follows:

from egse import math

...

 # in some expression further down the code you might use

 math.exp(a)

This will result in the following runtime error:

 File "some_module.py", line 8, in <module>
 print(math.exp(a))
AttributeError: module 'egse.math' has no attribute 'exp'

Of course this is an obvious example, but it might be more obscure like e.g. in this GitHub issue:
'module' object has no attribute 'Cmd'.

KU Leuven PLATO-KUL-PL-MAN-0003

16 | 1. Style Guide

https://github.com/ParmEd/ParmEd/issues/148

2. Version numbers
The version of Python that you use to run the code shall be >= 3.8. You can determine the version of
Python with the following terminal command:

$ python3 -V
Python 3.8.3

The version of the Common-EGSE (CGSE) and the test scripts (TS) that are installed on your system can
be determined as follows:

$ python3 -m egse.version
CGSE version in Settings: 2023.6.0+CGSE
CGSE installed version = 2023.6.0+cgse

$ python3 -m camtest.version
CAMTEST version in Settings: 2023.6.0+TS
CAMTEST git version = 2023.6.0+TS-0-g975d38e

The version numbers that are shown above have different parts that all have their meaning. We use
semantic versioning to define our version numbers. Let’s use the CGSE version [2023.6.0+CGSE] to
explain each of the parts:

• 2023.6.0 is the core version number with major.minor.patch numbers. The major number is the
year in which the software was released. The minor number is the week number in which the
configuration control board (CCB) gathered to approve a new release. The patch is used for urgent
bug fixes within the week between two CCBs.

• For release candidates a postfix can be added like 2023.6.0-rc.1 meaning that we are dealing with
the first release candidate for the 2023.6.0 release. We should avoid using release candidates in the
operational environment because these versions might not have been fully tested. In an official
release of the software, this part in the versioning will be omitted.

• CGSE is a release for the Common-EGSE repository. The Test scripts will have TS here. There is also
CONF for the plato-cgse-conf repository which contains all Setups and related files.

Then we have some additional information in the version number of the test scripts, in the above
example [2023.6.0+TS-0-g975d38e].

• 0 is the number of commits that have been pushed and merged to the GitHub repository since the
creation of the release. This number shall be 0 at least for the CGSE on an operational system. If
this number != 0, it means you have not installed the release properly as explained in the
installation instructions and you are probably using a development version with less tested or
even un-tested code. This number can differ from 0 for the test scripts as we do not yet have a
proper installation procedure for the releases.

• g975d38e is the abbreviated git hash number[1] for this release. The first letter g indicates the use of
git.

The VERSION and RELEASE are also defined in the settings.yaml and should match the first three
parts of the version number explained above. If not, it was probably forgotten to update these

PLATO-KUL-PL-MAN-0003 KU Leuven

2. Version numbers | 17

https://semver.org:
installation-manual.html

numbers when preparing the release. You can use these version numbers in your code by importing
from egse.version and camtest.version.

from egse.version import VERSION as CGSE_VERSION
from camtest.version import VERSION as CAMTEST_VERSION

[1] The full git hash is a much longer number and is an SHA-1 hash — a checksum of the content of the commit plus a header.

KU Leuven PLATO-KUL-PL-MAN-0003

18 | 2. Version numbers

3. Best Practices for Error and Exception
Handling
All errors and exceptions should be handled to prevent the Application from crashing. This is
definitely true for server applications and services, e.g. device control servers, the storage and
configuration manager. But also GUI applications should not crash due to an unhandled exception. It
is important that, at least on the server side, all exceptions are logged.

3.1. When do I catch exceptions?
Exceptions shouldn’t really be caught unless you have a really good plan for how to recover. If you
have no such plan, let the exception propagate to a higher level in your software until you know how
to handle it. In your own code, try to avoid raising an exception in the first place, design your code
and classes such that you minimise throwing exceptions.

If some code path simply must broadly catch all exceptions (i.e. catch the base Exception class) — for
example, the top-level loop for some long-running persistent process — then each such caught
exception must write the full stack trace to the log, along with a timestamp. Not just the exception type
and message, but the full stack trace. This can easily be done in Python as follows:

try:
 main_loop()
except Exception:
 logging.exception("Caught exception at the top level main_loop().")

This will log the exception and stacktrace with logging level ERROR.

For all other except clauses — which really should be the vast majority — the caught exception type
must be as specific as possible. Something like KeyError, ConnectionTimeout, etc. That should be the
exception that you have a plan for, that you can handle and recover from at this level in your code.

3.2. How do I catch Exceptions?
Use the try/except blocks around code that can potentially generate an exception and your code can
recover from that exception.

Any resources such as open files or connections can be closed or cleaned up in the finally clause.
Remember that the code within finally will always be executed, regardless of an Exception is thrown
or not. In the example below, the function checks if there is internet connection by opening a socket to
a host which is expected to be available at all times. The socket is closed in the finally clause even
when the exception is raised.

import socket
import logging

def has_internet(host="8.8.8.8", port=53, timeout=3):
 """Returns True if we have internet connection, False otherwise."""
 try:

PLATO-KUL-PL-MAN-0003 KU Leuven

3.1. When do I catch exceptions? | 19

 socket_ = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 socket_.settimeout(timeout)
 socket_.connect((host, port))
 return True
 except socket.error as ex:
 logging.info(f"No Internet: Unable to open socket to {host}:{port} [{ex}]")
 return False
 finally:
 if socket_ is not None:
 socket_.close()

3.3. What about the 'with' Statement?
When you use a with statement in your code, resources are automatically closed when an Exception is
thrown, but the Exception is still thrown, so you should put the with block inside a try/except block.

As of Python 3 the socket class can be used as a context manager. The example above can thus be
rewritten as follows:

import socket
import logging

def has_internet(host="8.8.8.8", port=53, timeout=3):
 """Returns True if we have internet connection, False otherwise."""
 try:
 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as socket_:
 socket_.settimeout(timeout)
 socket_.connect((host, port))
 return True
 except socket.error as ex:
 logging.warning(f"No Internet: Unable to open socket to {host}:{port} [{ex}]")
 return False

Another example from our own code base shows how to handle a Hexapod PUNA Proxy error.
Suppose you want to send some commands to the PUNA within a context manager as follows:

from egse.hexapod.symetrie.puna import PunaProxy

with PunaProxy() as proxy:
 proxy.move_absolute(0, 0, 2, 0, 0, 0)
 # Send other commands to the Puna Hexapod.

When you execute the above code and the PUNA control server is not active, the Proxy will not be able
to connect and the context manager will raise a ConnectionError.

PunaProxy could not connect to its control server at tcp://localhost:6700. No commands have been loaded.
Control Server seems to be off-line, abandoning
Traceback (most recent call last):
 File "t.py", line 3, in <module>
 with PunaProxy() as proxy:
 File "/Users/rik/Git/plato-common-egse/src/egse/proxy.py", line 129, in __enter__
 raise ConnectionError("Proxy is not connected when entering the context.")
ConnectionError: Proxy is not connected when entering the context.

So, the with .. as statement should be put into a try .. except clause. Since we probably cannot

KU Leuven PLATO-KUL-PL-MAN-0003

20 | 3. Best Practices for Error and Exception Handling

handle this exception at this level, we only log the exception and re-raise the connection error.

from egse.hexapod.symetrie.puna import PunaProxy

try:
 with PunaProxy() as proxy:
 proxy.move_absolute(0,0,2,0,0,0)
 # Send other commands to the Puna Hexapod.
except ConnectionError as exc:
 logger.exception("Could not send commands to the Hexapod PUNA because the control server is not reachable.")
 raise ①

① use a single raise statement, don’t repeat the ConnectionError here

3.4. Why not just return an error code?
In languages like the C programming language is it custom to return error codes or -1 as a return code
from a function to indicate a problem has occurred. The main drawback here is that your code, when
calling such a function, must always check it’s return codes, which is often forgotten or ignored.

In Python, throw exceptions instead of returning an error code. Exceptions ensure that failures do not
go unnoticed because the calling code didn’t check a return value.

3.5. When to Test instead of Try?
The question basically is if we should check for a common condition without possibly throwing an
exception. Python does this different than other languages and prefers the use of exceptions. There
are two different opinions about this, EAFP and LBYL. From the Python documentation:

EAFP: it’s Easier to Ask for Forgiveness than Permission.

This common Python coding style assumes the existence of valid keys or attributes and catches
exceptions if the assumption proves false. This clean and fast style is characterized by the presence of
many try and except statements. The technique contrasts with the LBYL style common to many other
languages such as C.

LBYL: Look Before You Leap.

This coding style explicitly tests for pre-conditions before making calls or lookups. This style contrasts
with the EAFP approach and is characterized by the presence of many if statements. In a multi-
threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”.

Consider the following two cases:

if response[-2:] != '\r\n':
 raise ConnectionError(f"Missing termination characters in response: {response}")

def convert_to_float(value: str) -> float:
 try:

PLATO-KUL-PL-MAN-0003 KU Leuven

3.4. Why not just return an error code? | 21

 return float(value)
 except ValueError:
 return math.nan

If you expect that 90% of the time your code will just run as expected, use the try/except approach. It
will be faster if exceptions really are exceptional. If you expect an abnormal condition more than 50%
of the time, then using if is probably better.

In other words, the method to choose depends on how often you expect the event to occur.

• Use exception handling if the event doesn’t occur very often, that is, if the event is truly
exceptional and indicates an error (such as an unexpected end-of-file). When you use exception
handling, less code is executed in normal conditions.

• Check for error conditions in code if the event happens routinely and could be considered part of
normal execution. When you check for common error conditions, less code is executed because
you avoid exceptions.

3.6. When to re-throw an Exception?
Sometimes you just want to do something and rethrow the same Exception. This is easy in Python as
shown in the following example.

try:
 # do some work here
except SomeException:
 logging.warning("...", exc_info=True)
 raise ①

① use only a raise statement, without the SomeException added. This will rethrow the exact same
exception that was catched.

In some cases, it is best to have the stacktrace printed out with the logging message. I’ve include the
exc_info=True in the example.

3.7. What about Performance?
It is nearly free to set up a try/except block (an exception manager), while an if statement always
costs you.

Bear in mind that Python internally uses exceptions frequently. So, when you use an if statement to
check e.g. for the existence of an attribute (the hasattr() method), this builtin function will call
getattr(obj, name) and catch AttributeError. So, instead of doing the following:

if hasattr(command, 'name'):
 command_name = getattr(command, 'name')
else:
 command_name = None

you can better use the try/except.

KU Leuven PLATO-KUL-PL-MAN-0003

22 | 3. Best Practices for Error and Exception Handling

try:
 command_name = getattr(command, 'name')
except AttributeError:
 command_name = None

3.8. Can I raise my own Exception?
As a general rule, try to use builtin exceptions from Python, especially ValueError, IndexError,
NameError, and KeyError. Don’t invent your own 'parameter' or 'arguments' exceptions if the cause of
the exception is clear from the builtin. The hierarchy of Exceptions can be found in the Python
documentation at Builtin-Exceptions > Exception Hierarchy.

When the connection with a builtin exception is not clear however, create your own exception from
the Exception class.

class DeviceNotFoundError(Exception):
 """Raised when a device could not be located or loaded."""
 pass

Even if we are talking about Exceptions all the time, your own Exceptions should
end with Error instead of Exception. The standard Python documentation also has a
section on User Defined Exceptions that you might want to read.

In some situations you might want to group many possible sources of internal errors into a single
exception with a clear message. For example, you might want to write a library module that throws its
own exception to hide the implementation details, i.e. the user of your library shouldn’t have to care
which extra libraries you use to get the job done.

Since this will hide the original exception, if you throw your own exception, make sure that it contains
every bit of information from the originally caught exception. You’ll be grateful for that when you
read the log files that are send to you for debugging.

The example below is taken from the actual source code. This code catches all kinds of exceptions that
can be raised when connecting to a hardware device over a TCP socket. The caller is mainly interested
of course if the connection could be established or not, but we always include the information from
the original exception with the raise..from clause.

def connect(self):

 # Sanity checks

 if self.is_connection_open:
 raise PMACException("Socket is already open")
 if self.hostname in (None, ""):
 raise PMACException("ERROR: hostname not initialized")
 if self.port in (None, 0):
 raise PMACException("ERROR: port number not initialized")

 # Create a new socket instance

 try:

PLATO-KUL-PL-MAN-0003 KU Leuven

3.8. Can I raise my own Exception? | 23

https://docs.python.org/3/library/exceptions.html#exception-hierarchy
https://docs.python.org/3/tutorial/errors.html#user-defined-exceptions

 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.sock.setblocking(1)
 self.sock.settimeout(3)
 except socket.error as e_socket:
 raise PMACException("ERROR: Failed to create socket.") from e_socket

 # Attempt to establish a connection to the remote host

 try:
 logger.debug(f'Connecting a socket to host "{self.hostname}" using port {self.port}')
 self.sock.connect((self.hostname, self.port))
 except ConnectionRefusedError as e_cr:
 raise PMACException(f"ERROR: Connection refused to {self.hostname}") from e_cr
 except socket.gaierror as e_gai:
 raise PMACException(f"ERROR: socket address info error for {self.hostname}") from e_gai
 except socket.herror as e_h:
 raise PMACException(f"ERROR: socket host address error for {self.hostname}") from e_h
 except socket.timeout as e_timeout:
 raise PMACException(f"ERROR: socket timeout error for {self.hostname}") from e_timeout
 except OSError as e_ose:
 raise PMACException(f"ERROR: OSError caught ({e_ose}).") from e_ose

 self.is_connection_open = True

3.9. When should I use Assertions?
Use assertions only to check for invariants. Assertions are meant for development and should not
replace checking conditions or catching exceptions which are meant for production. A good guideline
to use assert statements is when they are triggering a bug in your code. When your code assumes
something and acts upon the assumption, it’s recommended to protect this assumption with an assert.
This assert failing means your assumption isn’t correct, which means your code isn’t correct.

def _load_register_map(self):
 # This method shall only be called when self._name is 'N-FEE' or 'F-FEE'.
 assert self._name in ('N-FEE', 'F-FEE')

Another example is:

If this assertion fails, there is a flaw in the algorithm above
assert tot_n_args == n_args + n_kwargs, (
 f"Total number of arguments ({tot_n_args}) doesn't match "
 f"# args ({n_args}) + # kwargs ({n_kwargs})"
)

Remember also that running Python with the -O option will remove or disable
assertions. Therefore, never put expressions from your normal code flow in an
assertion. They will not be executed when the optimizer is used and your code will
break gracefully.

3.10. What are Errors?
This is a naming convention thing… names of user defined sub-classes of Exception should end with
Error.

KU Leuven PLATO-KUL-PL-MAN-0003

24 | 3. Best Practices for Error and Exception Handling

3.11. Cascading Exceptions
TBW

3.12. Logging Exceptions
Generally, you should not log exceptions at lower levels, but instead throw exceptions and rely on
some top level code to do the logging. Otherwise, you’ll end up with the same exception logged
multiple times at different layers in your application.

• https://docs.sentry.io/error-reporting/quickstart/?platform=python

3.13. Resources
Some of the explanations were taken shamelessly from the following resources:

• https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions

• https://stackoverflow.com/questions/1835756/using-try-vs-if-in-python

• https://stackoverflow.com/questions/24752395/python-raise-from-usage

• https://realpython.com/the-most-diabolical-python-antipattern/

PLATO-KUL-PL-MAN-0003 KU Leuven

3.11. Cascading Exceptions | 25

https://docs.sentry.io/error-reporting/quickstart/?platform=python
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://stackoverflow.com/questions/1835756/using-try-vs-if-in-python
https://stackoverflow.com/questions/24752395/python-raise-from-usage
https://realpython.com/the-most-diabolical-python-antipattern/

4. Writing docstrings
For this project we use the Google format for docstrings. Below, you can find a quick example of the
docstring for the humanize_bytes() function in the egse.bits module.

def humanize_bytes(n: int, base: Union[int, str] = 2, precision: int = 3) -> str:
 """
 Represents the size `n` in human readable form, i.e. as byte, KiB, MiB, GiB, ...

 Please note that, by default, I use the IEC standard (International Engineering Consortium)
 which is in `base=2` (binary), i.e. 1024 bytes = 1.0 KiB. If you need SI units (International
 System of Units), you need to specify `base=10` (decimal), i.e. 1000 bytes = 1.0 kB.

 Args:
 n (int): number of byte
 base (int, str): binary (2) or decimal (10)
 precision (int): the number of decimal places [default=3]
 Returns:
 a human readable size, like 512 byte or 2.300 TiB.
 Raises:
 ValueError: when base is different from 2 (binary) or 10 (decimal).

 Examples:
 >>> assert humanize_bytes(55) == "55 bytes"
 >>> assert humanize_bytes(1024) == "1.000 KiB"
 >>> assert humanize_bytes(1000, base=10) == "1.000 kB"
 >>> assert humanize_bytes(1000000000) == '953.674 MiB'
 >>> assert humanize_bytes(1000000000, base=10) == '1.000 GB'
 >>> assert humanize_bytes(1073741824) == '1.000 GiB'
 >>> assert humanize_bytes(1024**5 - 1, precision=0) == '1024 TiB'
 """

The first line shall be a short summary of the functionality ended by a period or question mark. The
rest, more detailed information, shall go after a blank line that separates it from the summary line.

You can use the following sections:

• Args: a list of the parameter names with a short description and possibly defaults values.

• Returns: or Yields: describe the returns value(s) their content and type. This section can be
ommitted when the docstring starts with the word 'Returns' or 'Yields", or when the function
doesn’t return anything (None).

• Raises: a list of the Exceptions that might be raised by this function.

• Examples: provide some simple examples and their possible outcome.

4.1. What needs to go into the docstring and what
not?
The docstring shall contain all information that the user of the function, method, class or module
needs to use it. The user in this case can be a developer or a normal user of a Python function. Try to
adapt the type and detail of the information in the docstring accordingly.

Do not describe how the functionality is implemented, instead describe what functionality is provided

KU Leuven PLATO-KUL-PL-MAN-0003

26 | 4. Writing docstrings

https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings

and how it can be used.

4.2. Where will the docstring show up?
We will provide an API documentation that contains all docstrings of all classes, functions, methods
and modules that are part of the CGSE. If you are using a Python IDE, use the available functionality to
visualize the docstring information of a function. For PyCharm e.g. this is the 'F1' key when the cursor
is on the function name.

If you are in the IPython REPL, you can type the function name followed by q question mark:

In [2]: humanize_bytes?
Signature: humanize_bytes(n: int, base: Union[int, str] = 2, precision: int = 3) -> str
Docstring:
Represents the size `n` in human readable form, i.e. as byte, KiB, MiB, GiB, ...

Please note that, by default, I use the IEC standard (International Engineering Consortium)
which is in `base=2` (binary), i.e. 1024 bytes = 1.0 KiB. If you need SI units (International
System of Units), you need to specify `base=10` (decimal), i.e. 1000 bytes = 1.0 kB.

Args:
 n (int): number of byte
 base (int, str): binary (2) or decimal (10)
 precision (int): the number of decimal places [default=3]
Returns:
 a human readable size, like 512 byte or 2.300 TiB
Raises:
 ValueError when base is different from 2 (binary) or 10 (decimal).

Examples:
assert humanize_bytes(55) == "55 bytes"
assert humanize_bytes(1024) == "1.000 KiB"
assert humanize_bytes(1000, base=10) == "1.000 kB"
assert humanize_bytes(1000000000) == '953.674 MiB'
assert humanize_bytes(1000000000, base=10) == '1.000 GB'
assert humanize_bytes(1073741824) == '1.000 GiB'
assert humanize_bytes(1024**5 - 1, precision=0) == '1024 TiB'
File: ~/Documents/PyCharmProjects/plato-common-egse/src/egse/bits.py
Type: function

In [3]:

PLATO-KUL-PL-MAN-0003 KU Leuven

4.2. Where will the docstring show up? | 27

Part II — Core Concepts

KU Leuven PLATO-KUL-PL-MAN-0003

28 |

5. Core Services
What are considered core services?

The core services are provided by five control servers that run on the egse-server machine: the log
manager, the configuration manager, the storage manager, the process manager, and the synoptics
manager. Each of these services is installed as a systemd service on the operational machine. That
means they are monitored by the system and when one of these processes crashes, it is automatically
restarted. As a developer, you can start the core services on your local machine or laptop with the
invoke command from a terminal.

$ cd ~/git/plato-common-egse
$ invoke start-core-egse

The services are described in full detail in the following sections.

5.1. The Log Manager
TBW

• local logging using the standard logging module

• log messages sent to the log manager log_cs via ZeroMQ

• why am I not seeing some log messages in my terminal or Python console? → only level INFO and
higher

• should I configure the logger, how?

• Cutelog and Textualog → user manual?

5.2. The Configuration Manager
The configuration manager is a core service…

• The GlobalState

• The Setup

• The Observation concept

5.3. The Storage Manager
The storage manager is responsible for storing the following data:

• all housekeeping from the devices that are connected by a control server

• all housekeeping and CCD data that is transferred from the N-FEE and the F-FEE during camera
tests.

• Origin = defined in the ICD, include a list of predefined origin strings

PLATO-KUL-PL-MAN-0003 KU Leuven

5.1. The Log Manager | 29

• Persistence: CSV / HDF5 / FITS / TXT / SQLite

5.3.1. File Naming

• see also the ICD

5.3.2. File Formats

• see also the ICD

5.4. The Data Dumper
We have some problems with performance in reading out the N-FEE when we request both sides of a
CCD. The reason for that is probably a series of events, such as waiting for a busy storage manager,
garbage collection, data processing, etc. When starting to develop the code for the fast camera, we
want to avoid these performance problems as much as possible and we made a number of decisions
that are explained below.

• The DPU Processor should not have to wait for confirmation of the storage manager when saving
data. So, we should change from a REQ-REP protocol to a PUSH-PULL protocol.

• The DPU Processor shall do less processing of information before sending messages to other
components. Actually, the process that reads out the spacewire data packets from the F-FEE shall
be as simple as possible and delegate all possible tasks to other processes.

• Communication between processes can be optimised using inter-process communication (IPC)
instead of Transmission Control Protocol (TCP).

So, we started out designing the new F-DPU Processes.

There are two main problems that we identified with the Data Storage. (1) The Storage Manager forms
a bottleneck handling all data that is generated by the system, not only writing science data to the
HDF5 files, but also handling (and duplicating) all housekeeping and auxiliary data that is generated
by all the devices used during the test. (2) Using the request-reply (REQ-REP) protocol, the process that
generates the data and sends it to the storage manager has to wait for a reply from the Storage
Manager with a confirmation of the data being written properly. This might lead to a delay when the
Storage manager is very busy writing information to different files and formats.

We decided to keep the functionality of the Storage Manager as it is, don’t touch it since it is still used
for all N-CAM activities. In addition, we will build a new process that will only handle the F-FEE HDF5
data from the F-DPU Processor. That new process we call the Data Dumper (data_dump). All data that
we retrieve from the F-FEE will be sent from the F-DPU Processor to the data dumper using a PUSH-
PULL protocol. This ZeroMQ message protocol can push messages to multiple workers, but we will
only connect with one worker, i.e. the data dumper.

Our seconds design point above says the F-DPU Processor shall do as few processing as possible and
delegate those tasks to other processes. The reason is to make sure the F-DPU Processor can readout
the F-FEE data fast enough to avoid any buffer overflow errors. For that reason we put a process in
between the F-DPU Processor and the data dumper which will take over the identification of data
packets, and processing those packets before they are sent to the data dumper. Communication

KU Leuven PLATO-KUL-PL-MAN-0003

30 | 5. Core Services

between the F-DPU Processor and the new data processor is also based on the PUSH-PULL message
protocol.

It’s time to put that into a diagram in the hope it will clarify. Don’t worry, we will talk you trough it.

The figure above contains the three processes described above, the F-DPU (FastCameraDPUProcessor),
the data processor (FastCameraDataProcessor) and the data dumper (data_dump). The
communication between these processes is based on the ZeroMQ PUSH-PULL protocol. Since these
processes always run on the CGSE server, we use the faster inter-process communication (IPC) instead
of the transmission-control protocol (TCP). We see that data is pushed from the F-DPU to the Data
Processor to the data dumper. The F-DPU Processor gets the data from the F-FEE, so there is transport
of data and information between the F-DPU and the DSI, which is the SpaceWire interface connected
to the F-FEE.

Please note the Storage Manager still receives and handles all housekeeping and
auxiliary data that is sent out by the core and device control servers, and the file
generation services. The data_dump process described here will only handle data
that is sent by the F-DPU and originates from the F-FEE.

Of course, the data dumper shall also be able to retrieve commands, mainly from the F-DPU, to
synchronise data flow or update configuration settings. This is done through the ZeroMQ DEALER-
ROUTER protocol which allows to send commands to the data dumper and request a return value only
when needed. For example, if the data dumper needs to update its Setup to the latest version, you
wouldn’t require a reply when you send a reload-setup command. On the other hand, if you request
status information from the data dumper you do expect a reply.

5.4.1. The data flow

This section explains what kind of data the data dumper receives and how this is handled. All data is
stored into an HDF5 file. The format of this file is explained in the CGSE ICD [PLATO-KUL-PL-ICD-0002]
section 4.2.

Timecode

The timecode is an integer between 0 and 63 and it is sent by the F-FEE immediately after the
reception of a synchronisation pulse. The timecode marks the start of a readout cycle. So, when the
data dumper receives a timecode, it closes its current HDF5 file and creates a new HDF5 file. The
HDF5 files are created in the daily/YYYYMMDD folder at the location given by the
PLATO_DATA_STORAGE_LOCATION environment variable. An example name for an HDF5 file that was
created on our system that was connected to the EM in Leuven:
/data/KUL/daily/20241007/20241007_KUL_F-FEE_SPW_00042.hdf5.

PLATO-KUL-PL-MAN-0003 KU Leuven

5.4. The Data Dumper | 31

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/icd.html#hdf5-format

Remember, each timecode creates a new HDF5 file. That is every 2.5 seconds.

Housekeeping Packets

The data dumper receives housekeeping packets for the DEB and the active AEBs. This
housekeeping is only retrieved when the F-FEE is actually sending out image data. The
housekeeping is stored in the same group as its image data (see further). The dataset names are
hk_aeb and hk_deb.

Housekeeping Data

The first thing the F-DPU Processor does when it receives a timecode, is requesting the register
map and the housekeeping data from the DEB and all AEBs. The difference from housekeeping
packets that are sent by the F-FEE is that housekeeping data, that is retrieved by RMAP
commanding, doesn’t have a packet header. The housekeeping data is saved in the group hk-data
and contains the datasets 'DEB', 'AEB1', 'AEB3', 'AEB3', and 'AEB4' and you should find this in every
single HDF5 file.

Register Map

The register map, which is the configuration memory area of the F-FEE, is retrieved from the F-FEE
by the F-DPU using a few RMAP memory read requests. The register map is stored in the HDF5 file
in a dataset named 'register'. Each HDF5 file shall have this dataset, and it contains the
configuration as was commanded and as it will be active starting on the next timecode/HDF5 file.

Commands

The data dumper also retrieves all commands that have been send to the F-FEE with their
arguments. This information is stored in the group commands. The first six commands will always be
command_sync_register_map(), command_deb_read_hk(), and command_aeb_read_hk('AEB1') for each
AEB.

CCD Image data

When the F-FEE is configured in science mode (DEB=FULL_IMAGE, AEBx=IMAGE and
DTC_IN_MODE set accordingly), the data dumper will receive all image data as SpaceWire data
packets, each containing the readouts of one row of the CCD. All these packets are stored in the
group data which is a subgroup of AEBx-S where 'x'=1,2,3,4 and 'S'='E' or 'F'. For example, when
image data is sent for the E-side of AEB2, the group AEB2_E will contain a group data with all the
image data packets, and also the groups hk_deb and hk_aeb (see above). In the default readout mode,
there shall be 2260 datasets with image data inside the data group.

When image data is available in the HDF5 file, the File group will have the attribute has_data set to
True, if no image data was sent, this attribute will be False.

Also the data group has two attributes attached when image data is available, i.e. ccd_side and the
overscan_lines

On the F-FEE EM we suffered from buffer overflow errors when receiving image data, resulting in
corrupt data packets being sent to the data dumper. These packets are stored in the group spw-data.
What we saw for the EM is that these corrupt packets were sometime longer, sometimes shorter
than the valid data packets, but the amount of packets matched the amount of missing packets in
the data group.

KU Leuven PLATO-KUL-PL-MAN-0003

32 | 5. Core Services

Observation ID

When an observation is started, the OBSID will be sent to the data dumper. The OBSID will be
saved in the obsid group.

5.4.2. Commanding the data dumper

The data dumper listens to commands coming in on the DATA_DUMPER.COMMANDING_PORT. A number of the
available commands are also provided as terminal commands. That is described for each of the
commands below. The following commands are currently recognised:

HELO

This command is used to register a process that wants to communicate with the data dumper. The
data dumper keeps a registry of all registered processes. The command expects the name of the
process that registers. A reply is sent on request.

BYE

This command is used to unregister from the data dumper. No reply is sent.

LOCATION

This command will set the new location for the HDF5 files after checking if the location exists and
is writable. An acknowledgment will be sent on request.

The corresponding terminal command: data_dump set-location <fully qualified folder name>

RELOAD-SETUP

This command is used to instruct the data dumper to reload the latest Setup from the configuration
manager. An acknowledgment will be sent on request.

The corresponding terminal command: data_dump reload-setup

STATUS

This command requests status information from the data dumper. The reply string will look like
this:

Data Dumper:
 Version : 0.4.0
 Hostname : 10.33.179.160
 Commanding port : 30305
 Monitoring port : 30304
 Data dump port : 30104
 Data location : /data/KUL/daily/20241008
 Site ID : KUL
 Setup loaded : 00035
 Scheduler : ['Scheduler.set_new_location → 2024-10-09 00:02:00+00:00']
 Dealers : DATA-DUMP-STATUS, F-DPU

The corresponding terminal command is: data_dump status

QUIT

This command will terminate the data dumper process. All open files and connections will be
closed and the scheduler will be stopped. This command will only be accepted if it is sent by a

PLATO-KUL-PL-MAN-0003 KU Leuven

5.4. The Data Dumper | 33

registered process. No reply is sent.

5.4.3. Start and stop the data_dump

The data dumper is made part of the core services. That means it will show up in the Process Manager
GUI in the section on the core services. It also means that, for operational systems that are working
with the F-CAM, the data_dump process will be started and maintained by systemd, i.e. the process will
automatically start at system startup and restarted when quit or crashed. No need to worry about it ὤ�.

If you want to check if the data dumper is running and properly configured, use the status command:

$ data_dump status
Data Dumper:
 Version : 0.4.0
 Hostname : 10.33.179.160
 Commanding port : 30305
 Monitoring port : 30304
 Data dump port : 30104
 Data location : /data/KUL/daily/20241008
 Site ID : KUL
 Setup loaded : 00035
 Scheduler : ['Scheduler.set_new_location → 2024-10-09 00:02:00+00:00'] ①
 Dealers : DATA-DUMP-STATUS, F-DPU ②

① The scheduler takes care of setting the correct location for the next day. This entry shows the
function that will be called at a given date/time.

② The dealers are the processes that are registered to the data dumper.

For developers who run their own core services on their development machine, the data_dump process
is started and stopped together with all other core services using the invoke start-core-egse and
invoke stop-core-services commands.

5.5. The Process Manager
The job of the process manager is to keep track and monitor the execution of running processes
during the Camera Tests.

There are known processes that should be running all the time, i.e. the configuration manager, and
the Storage Manager. Then, there are device control servers that are dependent on the Site and the
Setup at that site. The process manager needs to know which device control servers are available and
how to contact them. That information is available in the configuration manager. We need to decide
how the interface between the PM and the CM looks like and what information is exchanged in which
format.

5.6. The Synoptics Manager
Synoptics = in a form of a summary or synopsis; taking or involving a comprehensive mental view.
According to the Oxford Dictionary.

• what is this?

KU Leuven PLATO-KUL-PL-MAN-0003

34 | 5. Core Services

• Which parameters are Synoptic?

• From the device to the Grafana screen, what is the data flow, where are the name changes, where
are the calibrations….

In all involved test facilities, the EGSE is used to perform the same set of basic operations: monitoring
temperatures, changing the intensity of the source and point it somewhere, acquiring images, etc.
However, the devices that are used to perform these tasks are not everywhere the same (e.g. the OGSE
with its lamp and filterwheels, the DAQs for temperature acquisition, etc.).

Each (device) control server has a dedicated CSV file in which the housekeeping information is stored
and often the name of the parameters indicates the test facility at which they were acquired.

It is not inconvenient if user need to memorise the HK names for all test facilities, it also makes the
test and analysis scripts more complex.

The Synoptics Manager stores this information in one centralised location (the synoptics file) with
generic parameter names.

5.6.1. Synoptical Parameters

The housekeeping parameters that are stored in the synoptics are:

• Calibrated temperatures, acquired by the FEE, TCS, and facility DAQs;

• OGSE information (source intensity, measured power, whether the lamp and/or the laser are on);

• Source position, both actual and commanded, as field angles (θ,φ).

5.7. The Telemetry (TM) Dictionary
The tm-dicionary.csv file (further referred to as the "telemetry ™ dictionary") provides an overview of
all housekeeping (HK) and metrics parameters in the EGSE system. It is used:

• By the get_housekeeping function (in egse.hk) to know in which file the values of the requested HK
parameter should be looked for;

• To create a translation table to convert — in the get_housekeeping function of the device protocols
— the original names from the device itself to the EGSE-conform name (see further);

• For the HK that should be included in the synoptics: to create a translation table to convert the
original device-specific (but EGSE-conform) names to the corresponding synoptical name in the
Synoptics Manager (in egse.synoptics).

5.7.1. The File’s Content

For each device we need to add all HK parameters to the TM dictionary. For each of these parameters
you need to add one line with the following information (in the designated columns):

PLATO-KUL-PL-MAN-0003 KU Leuven

5.7. The Telemetry ™ Dictionary | 35

Column name Expected content

TM source Arbitrary (but clear) name for the device. Ideally this name is short but
clear enough for outsiders to understand what the device/process is for.

Storage mnemonic Storage mnemonic of the device. This will show up in the filename of the
device HK file and can be found in the settings file (settings.yaml) in the
block for that specific device/process.

CAM EGSE mnemonic EGSE-conform parameter name (see next Sect.) for the parameter. Note that
the same name should be used for the HK parameter and the
corresponding metrics.

Original name in EGSE In the get_housekeeping method of the device protocols, it is - in some cases
(e.g. for the N-FEE HK) - possible that you have a dictionary with all/most of
the required HK parameters, but with a non-EGSE-conform name. The
latter should go in this column.

Name of corresponding
timestamp

In the device HK files, one of the columns holds the timestamp for the
considered HK parameter. The name of that timestamp column should go
in this column of the TM dictionary.

Origin of synoptics at
CSL

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the CSL-specific HK file comprising this HK parameter. Leave
empty for all other devices!

Origin of synoptics at
SRON

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the SRON-specific HK file comprising this HK parameter.
Leave empty for all other devices!

Origin of synoptics at
IAS

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the IAS-specific HK file comprising this HK parameter. Leave
empty for all other devices!

Origin of synoptics at
INTA

Should only be filled for the entries in the TM dictionary for the Synoptics
Manager. This is the original EGSE-conform name of the synoptical
parameter in the INTA-specific HK file comprising this HK parameter.
Leave empty for all other devices!

Description Short description of what the parameter represents.

MON screen Name of the Grafana dashboard in which the parameter can be inspected.

unit cal1 Unit in which the parameter is expressed. Try to be consistent in the use of
the names (e.g. Volts, Ampère, Seconds, Degrees, DegCelsius, etc.).

offset b cal1 For raw parameters that can be calibrated with a linear relationship, this
column holds the offset b in the relation calibrated = a * raw + b.

slope a cal1 For raw parameters that can be calibrated with a linear relationship, this
column holds the slope a in the relation calibrated = a * raw + b.

calibration function Not used at the moment. Can be left emtpy.

KU Leuven PLATO-KUL-PL-MAN-0003

36 | 5. Core Services

Column name Expected content

MAX nonops Maximum non-operational value. Should be expressed in the same unit as
the parameter itself.

MIN nonops Minimum non-operational value. Should be expressed in the same unit as
the parameter itself.

MAX ops Maximum operational value. Should be expressed in the same unit as the
parameter itself.

MIN ops Minimum operational value. Should be expressed in the same unit as the
parameter itself.

Comment Any additional comment about the parameter that is interesting enough to
be mentioned but not interesting enough for it to be included in the
description of the parameter.

Since the TM dictionary grows longer and longer, the included devices/processes are ordered as
follows (so it is easier to find back the telemetry parameters that apply to your TH):

• Devices/processes that all test houses have in common: AEU, N-FEE, TCS, Synoptics Manager, etc.

• Devices that are CSL-specific;

• Devices that are SRON-specific;

• Devices that are IAS-specific;

• Devices that are INTA-specific.

5.7.2. EGSE-Conform Parameter Names

The correct (i.e. EGSE-conform) naming of the telemetry should be taken care of in the
get_housekeeping method of the device protocols.

Common Parameters

A limited set of devices/processes is shared by (almost) all test houses. Their telemetry should have the
following prefix:

Device/process Prefix

Configuration Manager CM_

AEU (Ancillary Electrical Unit) GAEU_

N-FEE (Normal Front-End Electronics) NFEE_

TCS (Thermal Control System) GTCS_

FOV (source position) FOV_

Synoptics Manager GSYN_

PLATO-KUL-PL-MAN-0003 KU Leuven

5.7. The Telemetry ™ Dictionary | 37

TH-Specific Parameters

Some devices are used in only one or two test houses. Their telemetry should have TH-specific prefix:

TH Prefix

CSL GCSL_

CSL1 GCSL1_

CSL2 GCSL2_

SRON GSRON_

IAS GIAS_

INTA GINTA_

5.7.3. Synoptics

The Synoptics Manager groups a pre-defined set of HK values in a single file. It’s not the original EGSE-
conform names that are use in the synoptics, but names with the prefix GSYN_. The following
information is comprised in the synoptics:

• Acquired by common devices/processes:

• Calibrated temperatures from the N-FEE;

• Calibrated temperatures from the TCS;

• Source position (commanded + actual).

• Acquired by TH-specific devices:

• Calibrated temperatures from the TH DAQs;

• Information about the OGSE (intensity, lamp and laser status, shutter status, measured power).

For the first type of telemetry parameters, their original EGSE-conform name should be put into the
column CAM EGSE mnemonic, as they are not TH-specific.

The second type of telemetry parameters is measured with TH-specific devices. The original TH-
specific EGSE-conform name should go in the column Origin of synoptics at

5.7.4. Translation Tables

The translation tables that were mentioned in the introduction, can be created by the
read_conversion_dict function in egse.hk. It takes the following input parameters:

• storage_mnemonic: Storage mnemonic of the device/process generating the HK;

• use_site: Boolean indicating whether you want the translation table for the TH-specific telemetry
rather than the common telemetry (False by default).

To apply the actual translation, you can use the convert_hk_names function from egse.hk, which takes
the following input parameters:

• original_hk: HK dictionary with the original names;

KU Leuven PLATO-KUL-PL-MAN-0003

38 | 5. Core Services

• conversion_dict: Conversion table you got as output from the read_conversion_dict function.

5.7.5. Sending HK to Synoptics

When you want to include HK of your devices, you need to take the following actions:

• Make sure that the TM dictionary is complete (as described above);

• In the device protocol:

◦ At initialisation: establish a connection with the Synoptics Manager: self.synoptics =
SynopticsManagerProxy()

◦ In get_housekeeping (both take the dictionary with HK as input):

▪ For TH-specific HK: self.synoptics.store_th_synoptics(hk_for_synoptics);

▪ For common HK: self.synoptics.store_common_synoptics(hk_for_synoptics).

Please, do not introduce new synoptics without further discussion!

PLATO-KUL-PL-MAN-0003 KU Leuven

5.7. The Telemetry ™ Dictionary | 39

6. The Commanding Concept
• Proxy – Protocol – Controller

• Control Servers

• YAML command files

• Dynamic commanding

6.1. The Control Server
TODO:

• Explain what the CS does during startup and what happens when this fails.

• description of the control.py module

6.1.1. Create multiple control servers for identical devices

This section describes what you can do when you have identical devices, such as two LakeShore
Temperature Controllers or multiple power supplies, and need to use them in the same project at the
same site. While the control servers are configured in the Settings YAML file with, among other things,
IP address and port numbers, they still need to be addressed in the Setup for configuring your
equipment at a certain time and location. Specifically, you will need to create the proper Proxy class to
communicate with your control server.

KU Leuven PLATO-KUL-PL-MAN-0003

40 | 6. The Commanding Concept

The specificity of the equipment used in your lab is defined in the Setup, and from the Setup, you will
usually create the Controller or Proxy objects to access and control your equipment. This can be done
in two different ways, which are explained in the next two sections.

Directly define the device controller class

In the Setup, you will define your devices as in the excerpt below. This will create a PunaProxy object
whenever you request the device from the Setup.

gse:
 hexapod:
 device: class//egse.hexapod.symetrie.PunaProxy

Some devices contain more than one controller and need several control servers to manage that
device. An example of this type is the AEU Test EGSE. This device contains six power supply units and
two analog wave generators. When requesting a Proxy object to access the device, say PSU 2, the PSU
identifier (the number '2' in this case) needs to be passed into the __init__() method of the Proxy class.
To accomplish this, the Setup for this device contains an additional device argument:

gse:
 aeu:
 psu2:
 device: class//egse.aeu.aeu.PSUProxy
 device_args: [2]

All the values that are given in the list for the device_args are passed as positional arguments to the
__init__() method of the PSUProxy class. When requesting the device from the Setup, you will get a
PSUProxy object. The super class was however instantiated with the port number that was defined for
PSU 2 in the settings file.

>>> psu = setup.gse.aeu.psu2.device
>>> psu
<egse.aeu.aeu.PSUProxy object at 0x7f83dafc2460>
>>> psu.name
'PSU2'
>>> psu.get_endpoint()
'tcp://localhost:30010'

Use a factory to create a device

In the Setup you can, instead of a class// definition, use a factory// definition. A Factory is a class
with a specific interface to create the class object that you intended based on a number of arguments
that are also specified in the Setup. Let’s first look at an example for the PUNA Hexapod. The following
excerpt from a Setup defines the hexapod device as a ControllerFactory. There are also two device
arguments defined, a device name and an idenditier.

gse:
 hexapod:
 device: factory//egse.hexapod.symetrie.ControllerFactory
 device_args:
 device_name: PUNA Hexapod

PLATO-KUL-PL-MAN-0003 KU Leuven

6.1. The Control Server | 41

 device_id: 1A

So, what happens when you access this device from the Setup. Let’s look at the following code snippet
from your Python REPL. The Setup has been loaded already in the setup variable. To access the device,
use the dot (.) notation.

1 >>> puna = setup.gse.hexapod.device
2 >>> puna
3 <egse.hexapod.symetrie.puna.PunaController object at 0x7f83e039ba60>
4 >>> setup.gse.hexapod.device_args.device_id = "1B"
5 >>> puna = setup.gse.hexapod.device
6 >>> puna
7 <egse.hexapod.symetrie.punaplus.PunaPlusController object at 0x7f83dab8ed00>

When we –with the given Setup– request the hexapod device, we get a PunaController object as you
can see on line 3, when we change the device_id to '1B' and request the hexapod device, we get the
PunaPlusController object (line 7). Changing the device_id resulted in a different class created by the
Factroy. Any Factory class that is used this way in a Setup shall implement the create(..) method
which is defined by the DeviceFactoryInterface class. Our ControllerFactory for the hexapod inherits
from this interface and implements the method.

class DeviceFactoryInterface:
 def create(self, **kwargs):
 ...

class ControllerFactory(DeviceFactoryInterface):
 """
 A factory class that will create the Controller that matches the given device name
 and identifier.

 The device name is matched against the string 'puna' or 'zonda'. If the device name
 doesn't contain one of these names, a ValueError will be raised. If the device_name
 matches against 'puna', the additional `device_id` argument shall also be specified.
 """
 def create(self, device_name: str, *, device_id: str = None, **_ignored):

 if "puna" in device_name.lower():
 from egse.hexapod.symetrie.puna import PunaController
 from egse.hexapod.symetrie.punaplus import PunaPlusController

 if not device_id.startswith("H_"):
 device_id = f"H_{device_id}"

 hostname = PUNA_SETTINGS[device_id]["HOSTNAME"]
 port = PUNA_SETTINGS[device_id]["PORT"]
 controller_type = PUNA_SETTINGS[device_id]["TYPE"]

 if controller_type == "ALPHA":
 return PunaController(hostname=hostname, port=port)
 elif controller_type == "ALPHA_PLUS":
 return PunaPlusController(hostname=hostname, port=port)
 else:
 raise ValueError(
 f"Unknown controller_type ({controller_type}) for {device_name} "
 f"– {device_id}"
)

 elif "zonda" in device_name.lower():
 from egse.hexapod.symetrie.zonda import ZondaController

KU Leuven PLATO-KUL-PL-MAN-0003

42 | 6. The Commanding Concept

 return ZondaController()

 else:
 raise ValueError(f"Unknown device name: {device_name}")

The create(..) method returns a device controller object for either the PUNA Alhpa or Alpha+
Controller, or for the ZONDA Controller. Each of these represent a Symétrie hexapod. The decision for
which type of controller to return is first based on the device name, then on settings that depend on
the device identifier. Both of these parameters are specified in the Setup (see above) and passed into
the create() method of the factory class at the time the user requests the device from the setup.

The TYPE, HOSTNAME, and PORT are loaded from the PUNA_SETTINGS dictionary. These settings are device
specific and are defined in the local setting for your site. The PUNA_SETTINGS is a dictionary that
represents part of the overall Settings. The factory class uses these device configuration settings to
decide which controller object shall be instantiated and what the parameters for the creation shall be.

└── PMAC Controller
 ├── H_1A
 │ ├── TYPE: ALPHA
 │ ├── HOSTNAME: XXX.XXX.XXX.X1A
 │ └── PORT: 1025
 └── H_1B
 ├── TYPE: ALPHA_PLUS
 ├── HOSTNAME: XXX.XXX.XXX.X1B
 └── PORT: 23

You might think that it would be simpler to specify the device configuration settings also in the Setup
and pass all this information to the create method when requesting the device from the Setup.
However, this would undermine the specific difference between Settings and Setup and also would
invalidate the direct creation of the controller object without the use of a factory class.

6.2. The Proxy Class
The Proxy class automatically tries to connect to its control server. When the control server is up and
running, the Proxy loads the device commands from the control server. When the control server is
not running, a warning is issued, and the device commands are not loaded. If you then try to call one
of the device methods, you will get a NotImplementedError. The ZeroMQ connection initiated by the
Proxy will just sit there until the control server comes up, so you can fix the problem with the control
server and call the load_commands() method on the Proxy again to load the commands.

6.3. The Protocol Class
The DPU Protocol starts a thread called DPU Processor Thread. This thread is a loop that continuously
reads packets from the FEE and writes RMAP commands when there is a command put on the queue.
When the control server receives a quit command, this thread also needs to be terminated gracefully
since it has a connection and registration with the Storage manager. Therefore, the Protocol class has
a quit() method which is called by the control server when it is terminated. The DPU Protocol class
implements this quit() method to notify the DPU Processor Thread. Other Protocol implementations
usually don’t implement the quit() method.

PLATO-KUL-PL-MAN-0003 KU Leuven

6.2. The Proxy Class | 43

Another example of a control server that starts a sub-process through its Protocol class in the TCS
control server. The control server start the TCS Telemetry process to handle reading housekeeping
from the TCS EGSE using a separate port [6667 by default].

6.4. Services
The control servers are the single point access to your equipment and devices. Commanding the
device is handled by the Protocol and Controller classes on the server side and by the Proxy class on
the client side. In addition to commanding your devices, you would also like to have some control on
the behaviour of your device control servers. That is where the Service slass comes into play. The
Services provide common commands that act on the control server instead of on the device. These
commands are send through a Service Proxy that you can request for each of the control servers.
Below is a code snippet asking for the service proxy of the hexapod PUNA and requesting the status of
the control server process.

>>> from egse.hexapod.symetrie.puna import PunaProxy

>>> with PunaProxy() as puna, puna.get_service_proxy() as srv:
... print(srv.get_process_status())
{
 'timestamp': '2023-03-29T08:00:31.708+0000',
 'delay': 1000,
 'PID': 39242,
 'Up': 486.7373969554901,
 'UUID': UUID('a74c0f52-ce06-11ed-a5d1-acde48001122'),
 'RSS': 115720192,
 'USS': 98033664,
 'CPU User': 10.516171776,
 'CPU System': 3.300619776,
 'CPU count': 6,
 'CPU%': 2.9
}

Status information for the control servers is also sent out on the monitoring port, so if you need to
monitor the process status, its better to subscribe to the monitoring protocol.

There are two commands that you can use to change the frequency by which the control server is
sending out information, one is for changing the housekeeping frequency, one is for changing the
monitoring frequency.

set_hk_frequency(freq: float) -> float

This function sets the housekeeping frequency (in Hz) to the given freq value. This is only
approximate since the frequency is converted into a delay time and the actual execution of the
get_housekeeping() function is subject to the load on the server and the overhead of the timing. What
will happen is that the delay time that will be applied is never shorter than the average execution time
of the get_housekeeping() method increased with a 200ms overhead to allow the control server to
respond to other commands.

set_monitoring_frequency(freq: float) -> float

KU Leuven PLATO-KUL-PL-MAN-0003

44 | 6. The Commanding Concept

This function works similar to the set_hk_frequency() but sets the delay time on the get_status()
function of the device protocol.

When you want to optimize these frequencies, make sure you have an idea of the execution time of
either function. If for instance the get_status() function takes 500ms to complete, it will be impossible
to request a monitoring update frequency of 2Hz.

6.5. Response, Failure, Success
The control.py module defines a number of classes that can be used to send a response on a device
command to the client. Responses are handle by the Protocol class in the handle_device_method()
method.

The main reason why these classes are provided is because Exceptions that happen in the server
process should somehow propagate to the client process. A Response object can contain a return value
if the command was executed successfully, or it can contain an Exception object when the device
command has failed. If the command has failed or not can be checked by the client with the
successful() method.

The Response class has three sub-classes, Success, Failure, and Message. A Success object is returned by
the server process with the actual response in the property return_code. In the case of an Exception,
the server process logs the error message and packs the Exception object in a Failure object.

6.6. Dynamic Commanding
Two of the requirements that were formulated when we started the analysis and design of the CGSE
was that (1) it shouldn’t be too difficult to implement device controllers and (2) the definition of the
commands shall be done at one place only. So we started out with a design where the commands were
defined in a YAML file (called the command yaml file) and the code would use this information to build
the API for the device. That would make it —from the device developer point of view— rather easy to
create the commanding interface for a new device. Unfortunately, the implementation was not that
easy or straightforward. We are working in a client-server or even microservices environment which
means the device commanding should be available on both the server side (what we call the
Controller) and on the client side (what we call the Proxy).

Both the Controller and the Proxy will have to implement the same interface, but we didn’t want to
bother the developer with having to implement the interface twice. The Proxy (client) side should be
easy, because it doesn’t need any processing or device control, it only needs to forward the command
and its arguments to the server to be executed and then wait for the response. On the server it is
slightly more complicated since there we have to interact with a device that can be connected by
Ethernet, USB, serial,… with many different commanding protocols.

We have currently two designs and implementations that handle dynamic commanding. The first
implementation we came up with is the @dynamic_interface which is a decorator that is used on the
methods in the device interface class. How this works is explained in the section below on Section
6.6.1. The latest implementation is the @dynamic_command which also decorates the interface methods,
but does a lot more work with respect to command string generation and response processing. How
this work is explained in Section 6.6.2. We have also written up a section on the transition from the

PLATO-KUL-PL-MAN-0003 KU Leuven

6.5. Response, Failure, Success | 45

old implementation into the new dynamic command implementation. See Section 6.6.3.

6.6.1. The Dynamic Interface Decorator

A @dynamic_interface decorator adds a private static variable to a function or method. The variable
name that is attributed is __dynamic_interface and it is used as a marker on the function.

The static variable is used by the Proxy class to check if a method is meant to be overridden
dynamically. The idea behind this is to loosen the contract of an abstract base class (ABC) into an
interface. For an ABC, the abstract methods must be implemented at construction/initialization. This is
not possible for the Proxy subclasses as they load their commands (i.e. methods) from the control
server, and the method will be added to the Proxy interface after loading. Nevertheless, we like the
interface already defined for auto-completion during development or interactive use.

When a Proxy subclass that implements an interface with methods decorated by the
@dynamic_interface does overwrite one or more of the decorated methods statically, these methods will
not be dynamically overwritten when loading the interface from the control server. A warning will be
logged instead.

The methods of the Proxy sub-class are added by the base class method load_commands(). This method
asks the control server to send all device command definitions. The control server replies with a
dictionary of user-defined methods and their names as keys. The commands are attributed to the
Proxy class as methods with the key as their method names, unless the attribute name already exists
in the Proxy and is not decorated as a dynamic interface. The following code snippet demonstrates
how the command methods are dynamic added/attributed to the Proxy class.

def _add_commands(self):
 for key in self._commands:
 if hasattr(self, key):
 attribute = getattr(self, key)
 if (
 isinstance(attribute, types.MethodType) and
 not hasattr(attribute, "__dynamic_interface")
):
 continue
 command = self._commands[key]
 new_method = MethodType(command.client_call, self)
 new_method = set_docstring(new_method, command)
 setattr(self, key, new_method)

The command from the dictionary is not just added as a new attribute of course (that would be too
easy ὠ�). Instead, each command is defined as an instance of a client-server command class
(ClientServerCommand). The ClientServerCommand has two methods client_call() and server_call()
and —you guessed it— all the dynamically attached methods are the client_call() method for that
command, but carrying the name of the command, i.e. the key in the dictionary.

The command.client_call is a function, i.e. an unbound class method. We are now trying to associate
this function with the class instance (self) of the Proxy sub-class. We need to create a method that is
bound to the class instance. Think of it as binding the class instance to the first argument of the
function (the self argument).

The MethodType() returns a new callable object that holds both the function and the instance, and if

KU Leuven PLATO-KUL-PL-MAN-0003

46 | 6. The Commanding Concept

you call this object, its first argument is automatically bound to the self argument.

The setattr(self, key, new_method) can not be replaced by a plain assignment because the name of
the method is a string and we can not do something like self.key = new_method because the method
name would be key.

So, during the creation of the Proxy object, the command list is requested from the control server, and
when the command is not already an attribute of the Proxy sub-class, its client_call() method is
connected as a new method to the Proxy sub-class.

The ClientServerCommand class is defined in the module egse.command and the client_call() method
does something like in the code snippet below. The arguments that are passed into the function are
first validated. This validation is done against the input given in the command yaml file. Then a
command execution object is created which is sent to the control server. The response from the server
is returned.

def client_call(self, other, *args, **kwargs):
 try:
 self.validate_arguments(*args, **kwargs)
 except CommandError as e_ce:
 logger.error(str(e_ce))
 return None

 ce = CommandExecution(self, *args, **kwargs)
 return other.send(ce)

At the control server, the command execution is received by the Protocol class and the command and
the given arguments are extracted. The Protocol then calls the server_call() method of the command
with the arguments. The (simplified) code snippet below illustrates what happens in the execute()
method of the Protocol class at the server. The self variable is the instance of the device protocol
class.

def execute(self):
 ...
 ce = self.receive()
 cmd = ce.get_cmd()
 args = ce.get_args()
 kwargs = ce.get_kwargs()
 ...
 cmd.server_call(self, *args, **kwargs)

The server_call() now calls the method from the Controller class that was associated with the
ClientServerCommand while parsing and processing the command yaml file. That method is called with
the arguments passed into the command execution.

• [] make a graph illustrating the round-trip of the commanding chain.

6.6.2. The Dynamic Command Decorator

One of the problems of the dynamic interface decorator is that during construction of the Proxy class,
the control server must be contacted to request the list of commands, when this fails and the control
server is not available, the Proxy is not functional. You will first get a warning log message of the

PLATO-KUL-PL-MAN-0003 KU Leuven

6.6. Dynamic Commanding | 47

following type:

<Device>Proxy could not connect to its control server at tcp://localhost:6700. No commands have been loaded.

When you then try to execute a command, e.g. puna_proxy.get_speed(), it will result in a
NotImplementedError. The reason is that the commands have not been loaded from the control server
and therefore the default interface method is executed resulting in this error.

Mainly for this reason we have enhanced the dynamic commanding protocol with the
@dynamic_command decorator. This decorator behaves differently on the client side (the Proxy) and the
server side (the Controller). There is no need anymore to load the available commands from the
control server, so, proxies for devices can be started when the control server is not yet running and
will gracefully (re-)connect to the device when the control server becomes available.

NOTE

add more description of what the decorator is, what happens behind the scenes, how it is
perceived on the client and on the server side etc…

So, since the @dynamic_command is the successor of the @dynamic_interface, how do we refactor our code
for this new commanding scheme. That will be explained in the next section.

6.6.3. Update your code to use the @dynamic_command decorator

• Each method in the interface needs to be changed from a @dynamic_interface to a @dynamic_command.
Remember the @dynamic_interface only marked the method with the __dynamic_interface
attribute. The @dynamic_command defines the type of command, how the command string is
contructed and how the response needs to be decoded. As an example, consider the
get_current_position() method in the HuberSMC9300Interface class.

 @dynamic_interface
 def get_current_position(self, axis) -> float:
 """
 Returns the current position for this axis as a float.
 """
 raise NotImplementedError

The method takes an argument axis and returns the current position as a float. The implementation is
found in the HuberSMC9300Controller class.

 def get_current_position(self, axis) -> float:
 cmd_string = cmd_q_pos.get_cmd_string(axis)
 retStr = self.huber.get_response(cmd_string)

 # The response will look like '<axis>:<retPos>;'
 # where <axis> is the axis number and <retPos> is the current position
 # as a float
 retPos = float(retStr[2:-1])

 return retPos

KU Leuven PLATO-KUL-PL-MAN-0003

48 | 6. The Commanding Concept

In the new scheme, the method in the interface class will look like below and the method in the
controller class will be removed.

 @dynamic_command(cmd_type="query", cmd_string="?p${axis}",
 process_cmd_string=process_cmd_string,
 process_response=decode_axis_float)
 def get_current_position(self, axis: int) -> float:
 """
 Returns the current position for this axis as a float.
 """
 raise NotImplementedError

The command is a query command and therefore expects a response from the device. The command
string is given in the form of a string template where 'axis' is replaced by the value of the axis
argument of the method. The cmd_string will become "?p1" when axis=1. The process_cmd_string is a
function that will prepare the command string for sending to the device. In the case of the HUBER
stages, it appends \r\n before sending.

The decode_axis_float is a function used to decode the response from the device. It’s a function that
can be used to process all responses in the form of <axis>:<float>;.

def decode_axis_float(response: bytes) -> float:
 """
 Decodes the response of type '<axis>:<float>;' and strips off the newline.
 """

 response = response.decode().rstrip()

 return float(response[2:-1])

So, we removed the method from the Controller class and converted the Interface method from a
@dynamic_interface to a @dynamic_command. The Controller class still inherits from the Interface class, but
additionally it now also needs to inherit from the DynamicCommandMixin class which is defined in the
egse.mixin module.

 class HuberSMC9300Controller(HuberSMC9300Interface, DynamicCommandMixin):
 ...

• The Proxy class needs to inherit from DynamicProxy instead of `Proxy:

 class HuberSMC9300Proxy(DynamicProxy, HuberSMC9300Interface):
 ...

• Finally, remove all device command definitions from the device YAML file, in our case
smc9300.yaml.

Thus far we have touch on the following arguments that can be used with @dynamic_command.

• cmd_type can be one of the following 'read', 'write', 'transaction', and 'query'. This is the only
required argument for the decorator.

PLATO-KUL-PL-MAN-0003 KU Leuven

6.6. Dynamic Commanding | 49

• cmd_string defines the formatting of the eventual command string that will be passed to the
transport functions. The cmd_string is a template string that contains $-based substitutions for the
function arguments. When you specify the use_format=True keyword, the cmd_string will be
formatted using the format() function instead of the template substitution. The format option is
less secure, but provides the functionality to format the arguments.

A template string looks like:

cmd_string="CREATE:SENS:TEMP ${name} ${type} default=${default}"

The same cmd_string as a format option:

cmd_string="CREATE:SENS:TEMP {name} {type} default={default:0.4f}"
use_format=True

• process_response is a pure function[1] to process the response from the device before it is returned.
This function shall take at least one keyword argument response= which is the response from the
device as a byte array. The value that is returned by the function is eventually also the response of
the command that was executed. This return value is device implementation specific and part of
the interface definition.

• process_cmd_string is a pure function to process the given command string to make it ready for
sending to the device. This function is called after the arguments to the command have been filled
into the template string given by cmd_string. The function shall take a string as the only positional
argument and return a string that will be sent to the device.

Then, there are these additional arguments that can be used with @dynamic_command to tune the
command string and pre- and post-processing.

• use_format defines if the cmd_str shall be formatted as a template string or with the format()
method.

• process_kwargs is a function that processes the keyword arguments and returns a string
representation of those arguments. By default, keyword arguments are expanded in a string
containing key=value pairs separated by spaces. This function is used when the arguments are
given as **kwargs to the function definition.

• pre_cmd specifies a function that will be executed before the processed command string is sent to
the device.

• post_cmd specifies a function that will be executed after the command is executed, i.e. sent to the
device and potentially retrieved a response.

The pre_cmd and post_cmd keywords specify a callable/function to be executed before and/or after the
actual command was executed. These functions are called with specific keyword arguments that allow
additional device interaction and response processing. The pre_cmd function is called with the
keyword argument transport= which passes the device transport. This allows the function to interact
with the device again through the methods defined by the DeviceTransport interface. Additionally, the
name of the called function (function_name), the processed command string (cmd_string) and the
original positional (args) and keyword arguments (kwargs) are passed into the pre_cmd function. These

KU Leuven PLATO-KUL-PL-MAN-0003

50 | 6. The Commanding Concept

additional arguments should not be changed, but can be used by the function for processing, logging,
etc. The pre_cmd function must not return anything.

The post_cmd function is called with the keyword arguments transport= and response=. The response
argument contains the response from the command that was previously sent to the device. The
post_cmd function can use this response to parse its content and act against this content, although
possible, it is usually not a good idea to alter the content of the response argument. The post_cmd
function shall return (i.e. pass through) the response or return it’s own information e.g. a status that
was retrieved from the device with an additional command sent over transport.

We now have walked through all the steps to upgrade your device commanding. The next thing to do
is testing!

[1] A pure function is a function that has no side effects and always returns the same output for the same input.

PLATO-KUL-PL-MAN-0003 KU Leuven

6.6. Dynamic Commanding | 51

7. Notifications for Control Servers
This section explains how notifications for control servers are designed and implemented with an
Event Listeners pattern. We will talk about events between two processes, two control servers. One
control server will send out notifications for an event and is therefore called the notifying control
server or the Producer, the other control server is listening for events and is therefore called the
listening control server, or the Consumer.

The basic requirements we have for the event notification are:

• Any control server shall be able to accept a registration for a notification of an event.

• It shall be possible to unregister from receiving events.

• The event generator (producer) shall not wait for a reply from the listener.

• The Listener shall handle events as soon as possible.

The following terms will be used throughout this chapter. In order to try to avoid confusion, we will
briefly explain those in the context of the CGSE.

Event The event is the object that carries the information about a change that
needs to be reported to the listeners.

Listener The process that registers to a control server for an event notification is
called a listener or consumer, i.e. it listens for one or more specific events
that are sent out by another control server process.

Event Generator The control server process that sends out notifications to its listeners.
Sometimes its called a producer. This control server holds registrations for
all listeners that need to be notified of an event.

In the case of the CGSE, a control server can act both as the event generator and the listener. Not that
the control server will send events to itself, but it will send events to other control servers. Therefore,
the implementation will include both sides of the event listener pattern, i.e. producer and consumer.
The pattern will be implemented with ZeroMQ messaging. This is different from the usual
implementation of this pattern where a producer object calls a method on a consumer object. In our
case, the event generator process, will send a ZeroMQ message, containing the event object, to the
listener process.

7.1. The Event
An Event is an object that contains all information needed by the listeners in order to process the
event notification.

An Event is defined by an event identifier and an event type. Currently, the only event identified is the
New Setup event notification with event_id: EVENT_ID.SETUP and event_type: "new_setup". An Event
also needs a context which contains information that is needed by the listener in order to handle the
event. The context contains event specific information, e.g. in the case of a new Setup, the context also
contains the setup identifier (setup_id).

KU Leuven PLATO-KUL-PL-MAN-0003

52 | 7. Notifications for Control Servers

The control server that wants to be notified of an event needs to implement the EventInterface in the
Proxy and in the Controller. This interface currently contains only one method, ie.
handle_event(event) which takes the event object as its only argument.

7.2. The Listener
Listeners are registered and unregistered through the services interface of the control server. That
means the developer of a control server that needs to listen to events doesn’t need to implement the
registration functions, only the handling of the events must be implemented.

When a listener is registered, a name and a proxy shall be provided. The name is used as an identifier
for the listener, the proxy is the Proxy class for the listening process. The proxy will be used by the
producer to notify the listener/consumer.

When registering, another proxy shall be provided, which is the producers proxy, i.e. the proxy for the
control server to which the listener wants to register. So, for example, if the storage manager wants to
listen to events on new Setups from the configuration manager, that proxy shall be a
ConfigurationManagerProxy. The following code snippet should make this clear:

self.register_as_listener(
 proxy=ConfigurationManagerProxy,
 listener={'name': 'Storage CS', 'proxy': StorageProxy, 'event_id': EVENT_ID.SETUP}
)

Registrations are issued from the ControlServer and handled by the ServiceProtocol. The registration
is executed in a separate thread and retried 5 times with a 10s wait time in between.

Event notifications are handled by executing the handle_event() method on the consumer Proxy. The
handle_event command is defined by the EventInterface which is a base class for the Controller and
the Proxy. Both the Controller class and the Proxy class need to inherit from the EventInterface.

class EventInterface:

 @dynamic_interface
 def handle_event(self, event: Event):
 ...

In this case, we will also need to provide an entry in the command YAML file:

handle_event:
 description: Notification of an event
 cmd: '{event}'

7.3. The Event Generator
The control server that generates the events keeps a list of registered consumers/listeners. The
registration of these listeners is handled by the service protocol. Event notifications are sent out from
the ControlServer class, but they usually occur in the Controller class. The Controller therefore shall

PLATO-KUL-PL-MAN-0003 KU Leuven

7.2. The Listener | 53

keep a reference to its control server. When the event is detected, the Controller will use the
notify_listeners() method of the ControlServer. This latter method expects an event identifier and
the event context. The example code snippet below sends out a new setup loaded notification to all
registered listeners.

self._control_server.notify_listeners(
 EVENT_ID.SETUP,
 {'event_type': 'new_setup', 'setup_id': setup_id}
)

The notify_listeners() method will execute the actual notification in a separate thread in order not to
block the commanding event loop.

7.4. The Service Protocol
The registration, management, and notification of listeners in a control server is handled by the
service protocol. That means all control servers automatically have this functionality available. There
is only one method that needs to be implemented in the listening control server and that is the
handling of the event. That is defined in the EventInterface which the Proxy and the Controller of the
listening control server shall inherit and implement.

New commands in Service:

• add_listener() – add a listener to the registration

• remove_listener() – remove a listener from the registration

• get_listener_names() – returns the names of the control servers that are registered as listener

New commands in ControlServer:

• register_as_listener() — register this control server to a producer

• unregister_as_listener() — unregisters this control server

• notify_listeners() — send an event notification to all registered listeners

• get_listener_names() — return a list of names of registered listeners

7.5. Scheduled Tasks
The scheduled tasks are functions known in the control server sub-class which will be executed
outside the context of commanding and monitoring. The reason we need these scheduled tasks is to
handle actions that either take too long during the execution of a command, or when a command
request is sent back to the same control server that the original command came from, e.g. request the
current Setup. In that latter case we will get a deadlock because both control servers will be waiting
for each others reply.

Scheduled tasks are executed from the ControlServers event loop (serve()) after the current command
has been finished and the status and housekeeping has been published. Keep in mind that –at this
point– the tasks should not take too much time or shall either run in a thread or run asynchronously.

KU Leuven PLATO-KUL-PL-MAN-0003

54 | 7. Notifications for Control Servers

Tasks can also be scheduled after a certain time, e.g. after 10s (approximately), or can be scheduled
when a certain condition is true, e.g., when a service comes on-line. The after and when can be
combined.

7.6. The Notification Process
This section explains what the natural flow is for notifications, starting at an event happening in a
control server up to processing the event in the registered listener processes.

As an example we will use the event that a new Setup will be loaded in the configuration manager.
This can happen when the configuration manager is requested to load a new Setup (load_setup()) or
when a client submits a new Setup to the configuration manager (submit_setup()). The configuration
manager will then send a notification of this event to its registered listeners. The listeners shall
implement a command to accept such an event notification. By convention, this command is
handle_event(event) (defined in the EventInterface). So, if you need to be notified about a new Setup,
your control server needs to implement the handle_event command in its commanding interface. See
further XXXXX

A control server that wants to listen to events needs to register first. This shall be done during startup,
usually in the __init__() method of the listening control server. Registration requires a proxy for the
notifying control server that will accept the registration, and a listener object (a dictionary) with
information about the listener process.

self.register_as_listener(
 proxy=ConfigurationManagerProxy,
 listener={'name': 'Storage CS', 'proxy': StorageProxy, 'event_id': EVENT_ID.SETUP}
)

The notifying control server will accept the registration and add the listener to its list of registrations.

When an event occurs at the notifying control server, an event notification will be sent out to all the
registered listeners. This is done by the notify_listeners() method of the ControlServer.

The listening control server will receive the notification, execute or schedule a task to act on the event,
and acknowledge the proper reception of the notification. This is done in the handle_event() method
that needs to be implemented by the listening control server in its Controller class. The handling of the
event shall be as fast as possible because the notifying control server will be waiting for an
acknowledgment. Therefore, there are currently two options: 1. the task is executed in a thread, 2. the
task is scheduled and will be executed from the event loop in the control server (serve()).

7.7. The Configuration Manager
NOTE

This section should describe how notification is implemented in the configuration control server as
a producer.

The controller now keeps track of the Setup that is currently active. This value changes when a
different Setup is loaded (with load_setup()) or when a new Setup is submitted (with submit_setup())

PLATO-KUL-PL-MAN-0003 KU Leuven

7.6. The Notification Process | 55

to the configuration manager.

If you want to know which processes have registered to the configuration manager, the status info has
been updated for this. The last line now shows the registered listeners:

$ cm_cs status
Configuration manager:
 Status: active
 Site ID: CSL2
 No observation running
 Setup loaded: 00053
 Hostname: 192.168.68.76
 Monitoring port: 6001
 Commanding port: 6000
 Service port: 6002
 Listeners: Storage CS, Dummy CS

7.8. The Storage Manager
NOTE

This section should describe how notification is implemented in the storage manager control
server as a consumer.

The Storage Manager can now handle events about a new Setup loaded in the configurations manager
and will register to the configuration manager during startup. The Storage Controller now keeps a
record of the currently loaded Setup in its Controller.

Since a Setup can only be changed outside the context of an observation, the implementation is not
too complicated. The controller has a new method load_setup(id) which is executed as a scheduled
task after a notification is received. That task will fetch the Setup from the configuration manager (the
reason why we needed scheduled tasks to avoid a deadlock at this point).

The status information from the Storage manager now also includes the ID of the loaded Setup. See
second last line in the example output below.

Storage Manager:
 Status: active
 Hostname: 172.20.10.3
 Monitoring port: 6101
 Commanding port: 6100
 Service port: 6102
 Storage location: /Users/rik/data/CSL2
 Loaded Setup: 00053
 Registrations: ['obsid', 'CM', 'PM', 'SYN-HK', 'SYN', 'DUMMY-HK']

7.9. The Dummy Control Server
As an example… XXXXX

The Dummy module is updated to implement event notification and listener registration. The Dummy
control server will register to the configuration manager at start up and will handle any event it

KU Leuven PLATO-KUL-PL-MAN-0003

56 | 7. Notifications for Control Servers

receives by logging the event reception and execution. In the shutdown phase after_serve() the
Dummy control server unregisters from the configuration control manager.

7.10. Adding event handling to a control server
This section will guide you through the process of implementing event handling into a control server.
As an example we will update the Synoptic Manager CS to register to the configuration manager for
new Setup events and handle those events in a scheduled task.

So, the summary of changes that we are going to implement is:

1. Add registration and de-registration to the Synoptic Manager CS

◦ add registration to __init__() method

◦ add de-registration to the after_server() method

2. Implement the EventInterface by means of the handle_event() method

◦ implement a load_setup function for the controller class

◦ schedule the task to load the Setup

The Synoptic Manager is started only after the configuration manager has started up and will
therefore be initialised with the proper Setup. No need to add a one-time scheduled task for loading
the Setup at startup.

7.10.1. Add registration and de-registration

Files:

• egse.synoptics.syn_cs.py

7.10.2. Implement the event handling

Files:

• egse.synoptics.__init__.py

XXXXX: shall we also add an example of an event handling task that takes too long to process and can
therefore not be a scheduled task unless it is running in a thread?

PLATO-KUL-PL-MAN-0003 KU Leuven

7.10. Adding event handling to a control server | 57

8. The Setup

The content of this section could be split between the developer manual and the
user manual. Usage can go into the User Manual, the Developer Manual will explain
how the Setup is coded and how it is used in code.

The Setup is the name we give to the set of configuration items that make up your test environment. A
configuration item is e.g. a device like a temperature controller, a mechanism like a Hexapod, a
camera (which is the SUT: System Under Test). The Setup groups all these items in one
configuration.[1]

In section Chapter 9 we explain what goes into Settings, how to use them and where these Settings are
defined. This section, however, explains what a Setup is, when and where it is used, how the different
Setups are managed and how you can create a new Setup.

The difference between the Settings and a Setup might be confusing. Remember that Settings are
static, while the Setup is dynamic:

• Settings are for constants, IP addresses, port numbers, system definitions, equipment settings …
Settings are more static and do not change often unless your system or network is reconfigured.
Settings are also distributed with the software with the possibility to overwrite for local specific
settings.

• Setup contains configuration items, conversion coefficients and tables, identification and
configuration of devices, everything that defines the configuration of the system, that can change
from test to test and has influence on the data, HK, … A Setup changes frequently during the test
campaign while e.g. calibration is improved. Setups are kept under configuration control in
GitHub.

Part of the information in this section can overlap with the section on Configuration and Setups in the
Commanding Manual, see RD-04.

8.1. What is the Setup?

Explain the Setup is a NavigableDict and what that means to the usage etc. See also
further in this section, it’s partly explained. This is explained further in …

The Setup is defined as a hierarchy of configuration items and their specific settings and definitions.
All the hardware and software that make up your complete test setup will be described in the YAML
file. As a quick example, the lines below define a typical setup for the Hexapod PUNA that is used at
CSL:

Setup:
 gse:
 hexapod:
 device_name: Symetrie Puna Hexapod
 device: class//egse.hexapod.symetrie.puna.PunaProxy
 ID: 172543
 firmware: 3.14

KU Leuven PLATO-KUL-PL-MAN-0003

58 | 8. The Setup

 time_request_granularity: 0.1

The Setup is implemented as a YAML configuration file and loaded into a special Python dictionary.
The dictionary is special because it allows you to navigate with a 'dot' notation in addition to keys. The
following two lines are equivalent (assuming the Setup is loaded in the variable setup):

>>> setup.gse.hexapod.ID
172543

>>> setup["gse"]["hexapod"]["ID"]
172543

Another advantage of this special dictionary is that some fields are interpreted and loaded for you.
For example, the device field of the Hexapod starts with class// and provides the class name for the
Hexapod device. When you access this field, the class will automatically be instantiate for you and you
can start commanding or querying the device. The following example initiates a homing command on
the Hexapod controller:

>>> setup.gse.hexapod.device.homing()

When you want to know which configuration items are defined in the Setup at e.g. the gse level, use
the keys() function:

>>> setup.gse.keys()
dict_keys(['hexapod', 'stages', 'thorlabs', 'shutter', 'ogse', 'filter_wheel'])

When you want a full printout of the setup.gse, use the print function. This will print out the
dictionary structure as loaded from the YAML file.

>>> print(setup.gse)

8.2. What goes into the Setup?
The Setup will contain configuration information of your test equipment. This includes calibration
and conversion information, identification, alignment information, etc. All items that can change from
one environment to the next, or from one test to the next, should be fully described in the Setup.

The following list gives an idea of what is contained and managed by a Setup. This list is not
comprehensive.

• site: identification of the Site, e.g. CSL, IAS, INTA, SRON.

• position: if you have different test setups, each of them should be identifiable, e.g. at CSL there are
two positions with different setups.

• gse: the ground support equipment like mechanisms, temperature controllers and sensors/heaters,
optical equipment, shutter, hexapod, power meters, SpaceWire interface, TEB, etc.

PLATO-KUL-PL-MAN-0003 KU Leuven

8.2. What goes into the Setup? | 59

• camera: this is the System Under Test (SUT) and it has different sub-items like FEE, TOU, DPU
software, model and type, all with their specific characteristics.

For all of these items the Setup shall hold enough information to uniquely identify the configuration
item, but also to reproduce the state of that item, i.e. version numbers of firmware software,
transformation matrices for alignment, conversion coefficients, calibration tables, etc.

8.3. How to use the Setup
As described above, the Setup is a special dictionary that contains all the configuration information of
your test equipment. This information resides in several files maintained by the configuration control
server. You can request a list of Setups that are available from the configuration manager with the
list_setups() function. This is a convenience function that will print the list in your Python session.

>>> list_setups()

The above command will contact the configuration control server and request the list of Setups. To
load the current active Setup into your session, use the load_setup() method. This function takes one
optional argument to load a specific Setup. Now you can work with this setup as explained above,
accessing its content and navigate through the hierarchy with the 'dot' notation.

If you need to make a change to one of the configuration items in the Setup, you can just assign a new
value to that field. Suppose we have upgraded the firmware of the PUNA Hexapod that is used in this
setup, we can use the following commands to make that change:

>>> setup.gse.hexapod.Firmware = 3.1415

The change then needs to be submitted to the configuration control server who will put it under
configuration control, i.e. assign a new unique Setup identifier and save the entier Setup into a new
YAML file.

>>> setup = submit_setup(setup, description="Updated firmware of PUNA Hexapod")

8.4. How to create and manage Setups
Whenever you make a change to an item in the Setup, or you add a configuration item, a new Setup
will be created with a new unique id as soon as you submit the Setup to the configuration manager.

The configuration control server has no insight or knowledge about the content of a Setup, so you can
freely add new items when needed. The simplest way to start with a Setup and adapt it to your
current test equipment environment, is to load a Setup that closely resembles your current
environment, and only make the changes necessary for the new Setup, then submit the new Setup to
the configuration control server.

If you need to start from scratch, create a new empty Setup or feed it with a dictionary that contains
already some of the information for the Setup:

KU Leuven PLATO-KUL-PL-MAN-0003

60 | 8. The Setup

>>> from egse.setup import Setup
>>> setup = Setup({"gse": {"hexapod": {"ID": 42, "name": "PUNA"}}})
>>> print(setup)
gse:
 hexapod:
 ID: 42
 name: PUNA

If you need to set the firmware version for the Hexapod controller.

>>> setup.gse.hexapod.firmware = "2020.07"
>>> print(setup)
gse:
 hexapod:
 ID: 42
 name: PUNA
 firmware: 2020.07

This way it is easy to update and maintain your Setup. When ready, submit to the configuration
control server as shown above.

If you want to save your Setup temporarily on your local system, use the to_yaml_file() method of
Setup. This will save the Setup in your working directory.

>>> setup.to_yaml_file(filename="SETUP-42-FIXED.yaml")

The Setup is also available from the GlobalState, however, use this with care and
only when there is no other means to get hold of the current Setup. The preferred
way to make the current Setup available in a function is to pass a setup argument.

Explain here how the user should submit a Setup from the client machine. That will
send the Setup to the configuration manager and automatically push the new Setup
to the GitHub repository provided the proper permissions are in place, i.e. a deploy
key with write access. Where shall this be described?

[1] Both Setup and configuration are overloaded words, if not clear from the context, I’ll try to explain them when used.

PLATO-KUL-PL-MAN-0003 KU Leuven

8.4. How to create and manage Setups | 61

9. The Settings Class
• The settings.py module…

• The settings.yaml file is located in the egse module.

• The local settings ….

• reloading settings is currently not possible

The Settings contain all static information needed to configure your system and environment. That is
first of all the version and release numbers of the CGSE, and the site identifier and other information
about the site. The Settings also contain all the IP addresses and port number for all the known
devices, together with other static information like the device name, default settings for the device like
speed, timeout, delay time, firmware version, etc. We will go into more details about the content later,
let’s now first look at the format and usage of the Settings.

The Settings are maintained in a YAML file which is located in the egse module. The default Settings
file is named settings.yaml and we call them Global Settings. You can for your project or test house
also define Local Settings with higher precedence that will overwrite the global settings when loaded.
The location of the local settings YAML file is defined by the environment variable
$PLATO_LOCAL_SETTINGS and is usually defined as follows:

$ export PLATO_LOCAL_SETTINGS=/cgse/local_settings.yaml

In your code, the Settings are accessed by Settings class from the egse.settings Python module. This
module defines the Settings class which is used to access all information in the Settings. You can load
the Settings in your session with the following command:

from egse.settings import Settings

settings = Settings.load()

This will load the global settings first and then the local settings if the environment variable is
defined. Remember that local settings will take precedence. You only need to define the settings that
actually change for your local installation, respect the full hierarchy when specifying those settings.
You are allowed to define new entries at any level in the Settings hierarchy.

In a terminal you can check your settings as follows:

$ python3 -m egse.settings
AttributeDict
├── Common-EGSE
│ ├── VERSION: 2022.3.0-rc.13+CGSE
│ └── RELEASE: November 2022, 2022.3.0-rc.13+CGSE
├── SITE
│ ├── ID: CSL1
│ ├── SSH_SERVER: localhost
│ └── SSH_PORT: 22
...
Memoized locations:

KU Leuven PLATO-KUL-PL-MAN-0003

62 | 9. The Settings Class

['/cgse/lib/python/Common_EGSE-2022.3.0rc13+cgse-py3.8.egg/egse/settings.yaml', '/cgse/local_settings.yaml']

The memoized locations are the settings files that have been loaded and memorized. Once the
application has started and the settings have been loaded, they can only be reloaded by explicitly
forcing a reload as follows:

settings = Settings.load(force=True)

This does however not guarantee that the settings will propagate properly throughout the application
or to client apps. Settings can be saved in local variables or class instances that have no knowledge of
a settings reload.

Other things to document XXXXX:

• IP addresses or HOSTNAMES in the global settings shall by default all be set to localhost.

PLATO-KUL-PL-MAN-0003 KU Leuven

9. The Settings Class | 63

10. The GlobalState
• What can we do with the GlobalState?

• How to use the GlobalState in test scripts?

 This section needs to be updated!

10.1. Singleton versus Shared State
From within several places deep in the code of the test scripts, we need access to a certain state of the
system and act accordingly. The main state to access is the Setup which provides all configuration and
calibration parameters of the test equipment and of the SUT.

Another use is the dry_run state which allows you to execute command sequences (test scripts)
without actually sending instructions to the hardware, but just logging that the command would have
been executed with its arguments. We could have gone with a singleton pattern, i.e. a class for which
only one instance exists in your session, but a singleton is a difficult pattern to test and control.
Another possible solution is to use a class for which all instances have a shared state. That means even
if the class is instantiated multiple times, its state is the same for all those instances. This pattern is
also known as the Borg pattern or the shared-state pattern.

An alternative to provide such functionality is to pass arguments with the required state into all levels
until the level/function where the information is needed, even if the argument is never used in most
of the intermediate levels.

The name GlobalState is maybe not such a good name as this class actually shares state between its
instances, but this shared state is not global in the sense of a global variable. The objects can be
instantiated from anywhere at anytime, which is what makes them globally available.

10.2. What is in the GlobalState?
The following sections describe the different states and function provided by the GlobalState.
Remember the GlobalState is intended to be used within functions and methods of the test scripts in
order to access global state information. That means the GlobalState needs to be initialised for some
functions to work properly. Don’t use the GlobalState in Common-EGSE modules. If you need access to
the Setup from the CGSE, explicitly request the Setup from the configuration manager using the
get_setup() function.

10.2.1. The Setup

You can access the Setup from the GlobalState as follows:

from camtest import GlobalState

setup = GlobalState.setup

KU Leuven PLATO-KUL-PL-MAN-0003

64 | 10. The GlobalState

The GlobalState requests the Setup from the configuration manager which keeps track of the currently
active Setup. On system startup however, when the configuration manager is not running, the above
code will return None. Fix your system startup and load a proper Setup into the configuration manager
if this is the case.

You can load the Setup also with the function load_setup() and this will then automatically populate
the GlobalState:

from egse.setup import load_setup

setup = load_setup()

From the Setup you can access all devices that are known by the configuration manager, and you have
access to configuration and calibration settings. The Setup is fully described in the API documentation
of the class at egse.setup.

The Setup that comes with the GlobalState is loaded from the Configuration Manager. If you need to
work with different Setups simultaneously, GlobalState is not the right place to be. In this case you
should work directly with the Setup class. You can get any Setup with the get_setup() function without
loading that Setup in the configuration manager.

from egse.setup import get_setup

setup_67 = get_setup(67)

There is a subtle difference between the get_setup() and the load_setup() function.
The get_setup() function retrieves the requested Setup from the configuration
manager without replacing the currently active Setup in the configuration manager
control server. The load_setup() returns the requested Setup and replaces the
currently active Setup in the configuration manager.

Alternatively, you can load any Setup directly from a dictionary or a YAML file using the static
methods from_dict(my_dict) or from_yaml_file(filename) of the Setup class.

There is a full section on the Setup, how to populate it, how it is managed and controlled and what it
shall contain and what not. Check out the section on The Setup to get more details.

10.2.2. Performing a Dry Run

At some point we need to check the test scripts that we write in order to see if the proper commands
will be executed with their intended arguments. But we don’t want the commands to be sent to the
mechanisms or controllers. We want to do a dry run where the script is executed as normal, but no
instructions are sent to any device.

10.2.3. Retrieve the Command Sequence

Whenever a building block is executed, a command sequence is generated and stored in the
GlobalState. There are two functions that access this command sequence: (1) the execute() function

PLATO-KUL-PL-MAN-0003 KU Leuven

10.2. What is in the GlobalState? | 65

will copy the command sequence into the test dataset, and (2) the generate_command_sequence() will
return the command sequence as a list (TODO: this will probably get its own class eventually).

KU Leuven PLATO-KUL-PL-MAN-0003

66 | 10. The GlobalState

11. Data Strategy
☐ where is the data stored

☐ what is the folder structure

☐ /data and /archive

☐ rsync

☐ data propagation

[]

PLATO-KUL-PL-MAN-0003 KU Leuven

11. Data Strategy | 67

12. Date, Time and Timestamps
This section explains how and where time is used in the CGSE code and in the data.

What goes in?

☑ the format_datetime() function

☐ timestamps in the CSV files

☐ timestamps in the HDF5 files

☐ timestamps in the FITS files

☐ timestamps in the log files

☐ timestamps in Grafana

☐ UTC versus local time

☐ time synchronisation → NTP or otherwise

12.1. Formatting the date and time
In the egse.system module we have provided a few functions to work with datetime in a consistent
way. The most important is the format_datetime() function which is used for instance to create the
timestamps for all CSV housekeeping data files.

>>> format_datetime()
'2022-06-01T07:47:25.672+0000'

The format that is returned by default is "YYYY-mm-ddTHH:MM:SS.μs+0000" which means the time is
expressed in UTC. The function has a few optional parameters that allows to tune the returned string.
This should be used only for specific purposes, use the default always to generate a timestamp for
your data.

If you need to parse the timestamp string returned by the format_datetime() function, use the
following format string: "%Y-%m-%dT%H:%M:%S.%f%z". We might provide a parse_datetime() function in
the future to standardize and simplify the parsing of datetime objects.

>>> datetime.strptime(format_datetime(), "%Y-%m-%dT%H:%M:%S.%f%z")
datetime.datetime(2022, 6, 1, 8, 22, 3, 686000, tzinfo=datetime.timezone.utc)

If you need a specific date without time, the format_datetime() function takes a string argument that
you can use to get the date of today, yesterday, tomorrow and the day before yesterday. This might be
useful in scheduling tasks.

>>> format_datetime('yesterday)
'20220531'
>>> format_datetime('yesterday', fmt="%d/%m/%Y")
'31/05/2022'

KU Leuven PLATO-KUL-PL-MAN-0003

68 | 12. Date, Time and Timestamps

Part III — Device Commanding

PLATO-KUL-PL-MAN-0003 KU Leuven

| 69

13. Device Control Servers
• Mechanisms

• Sensors

• Heaters

• Facility

13.1. The Device Interface Classes
• Naming convention

• SCPI

• Where are device drivers configured?

• Direct communication with devices

• Device simulators

• Device Interfaces

• Description of the device.py module

13.1.1. The Connection Interface

A connection interface defines the commands that are used to establish a connection, terminate a
connection, and check if a connection has been established. We have two main connection interfaces:
(1) a connection to a hardware device, e.g. a temperature controller or a filter wheel, and (2) a
connection to a control server. A control server is the single point access to a hardware device.

Connection Interface for Devices

A Controller is a class that connects directly to the hardware. This can be through e.g. an Ethernet TCP
socket or a USB interface or any other connection. The details of a connection are buried in low level
device interface classes which use all kinds of different protocols. The Controller will use these low
level device classes to control the connection, and then provide a uniform interface to connect and
disconnect from the device to the user.

So, we defined a generic interface for working with device connections. The interface defines the
following commands: connect, disconnect, and is_connected.

Use the connect() method to establish a connection to the hardware controller of the device.

Use the disconnect() method to terminate the connection to the hardware controller.

The previous two commands raise a device specific error (Exception) when a connection can not be
established or terminated.

Use the is_connected() method to check if a connection with the controller is established. This
command returns True if there is a working connection with the device, False otherwise.

KU Leuven PLATO-KUL-PL-MAN-0003

70 | 13. Device Control Servers

This interface shall be implemented by device controller classes, device simulators, and Proxy sub-
classes. Examples of device controllers are PunaController and ThorlabsPM100Controller, while their
simulators are called PunaSimulator and ThorlabsPM100Simulator and the Proxy sub-classes PunaProxy
and ThorlabsPM100Proxy.

In the example below we make a connection to the PUNA Hexapod and issue a homing and an
absolute movement command, then close the connection.

from egse.hexapod import HexapodError
from egse.hexapod.symetrie.puna import PunaController

puna = PunaController()
try:
 puna.connect()
 puna.homing()
 puna.move_absolute(0, 0, 18, 0, 0, 0)
except HexapodError as exc:
 logger.error(f"There was an error during the interaction with the PUNA Hexapod: {exc}")
 # do recovery action here if needed
finally:
 if puna.is_connected():
 puna.disconnect()

Most of the Controllers can also be used as a context manager. The following code does the same as
the example above. The connection is automatically established and terminated by the context
manager.

from egse.hexapod.symetrie.puna import PunaController

with PunaController() as puna:
 puna.homing()
 puna.move_absolute(0, 0, 18, 0, 0, 0)

Connection Interface for Proxy Classes

Proxy classes make a connection to a control server, e.g. the PunaProxy class will make a connection to
the PunaControlServer. The control server will in turn be connected to either a Controller or a
Simulator. The Proxy classes are called this way, because they act as a gateway for device commands,
i.e. the proxy forwards device commands to the Controllers through the control server.

As stated above, a Proxy sub-class implements the device connection interface with the connect(),
disconnect(), and is_connected() methods. That is because a Proxy completely mimics a Controller
device interface. The Proxy however also establishes and manages a connection with its control
server, but we cannot use the same connection interface for this type of connection.

The Proxy connection to its control server is defined by the ControlServerConnectionInterface and is
implemented in the Proxy base class. This interface defines the following commands:

• connect_cs,

• disconnect_cs,

• reconnect_cs,

PLATO-KUL-PL-MAN-0003 KU Leuven

13.1. The Device Interface Classes | 71

• reset_cs_connection,

• and is_cs_connected.

Use the connect_cs() and disconnect_cs() methods to establish and terminate a connection to the
control server. The reconnect_cs() method currently basically does the same as the connect_cs()
method, it is provided as a convenience to make the flow of connecting and reconnecting clearer in
your code when needed.

Use the reset_cs_connection() method when the connection is in an undefined state. This method will
try to connect and reconnect to the control server for a number of retries before failing.

Use the is_cs_connected() method to check if a connection with the control server is established. This
command returns True if there is a working connection with the server, False otherwise.

This interface is implemented in the Proxy base class and there is no need to worry about this in your
Proxy sub-class implementation.

Also a Proxy can be used as a context manager. The example for the PunaController above can
therefore be rewritten for the PunaProxy:

from egse.hexapod.symetrie.puna import PunaProxy

with PunaProxy() as puna:
 puna.homing()
 puna.move_absolute(0, 0, 18, 0, 0, 0)

Note however that the Context Manager in this case will connect and disconnect to the control server,
leaving the connection to the hardware device untouched.

KU Leuven PLATO-KUL-PL-MAN-0003

72 | 13. Device Control Servers

14. The System Under Test (SUT)
☑ Commanding is the same as all other devices, DPU Control Server and Controller, Proxy, etc

☑ DPU Processor as a separate process to communicate to the FEE (Simulator)

☑ DPU Protocol starts the DPU Processor process

☑ DPU Controller and DPU Processor communicate via three Queues, the command queue, the
response queue, and a priority queue.

☑ Timing: timecode packet, HK packet, [Data packets], Commanding through RMAP requests

☐ Describe the transport

14.1. DPU Control Server and DPU Processor
The DPU Control Server (used to be called the DPU Simulator in older documents) acts like any other
control server. It’s Protocol class (DPUProtocol) starts a DPUController which implements the commands
that are defined in the DPUInterface class. Specific DPU commands are sent to the control server using
the DPUProxy class. The DPUProxy class also implements the DPUInterface.

The difference with normal device control servers lies in the additional sub-process which handles
the communication with the N-FEE. This separate process, the DPUProcessor, is also started by the
DPUProtocol and both the DPUProcessor and the DPUController communicate via three multiprocessing
Queues, the command queue, the response queue, and a priority command queue. The main task of
the DPUProcessor is to communicate with the N-FEE, i.e. command it via SpaceWire RMAP Requests
and retrieve housekeeping and data packets that are sent to the Storage manager. The commands that
the DPUProcessor must execute are passed through the command queue by the DPUController. Every
readout cycle the DPUProcessor checks the command queue and passes any available command to the
N-FEE as an RMAP Request.

Commands that are given on the Python prompt are by definition synchronous meaning when you
call a function or execute a building block, the function or building block will wait for its return value
before finishing. This is usually not a problem, because we most of the time have a pretty good idea
how long a calculation or action will take. Most functions return within a few hundred milliseconds or
less, which is practically immediate. When commanding the N-FEE however, things are more
complicated. The N-FEE has strict timing when it comes to commanding. During the sync period
(usually 6.25s unless commanded different) there is a slot of at least 2s at the end of the period, which
is reserved for commanding. The sync period starts with a timecode packet followed by the N-FEE
housekeeping packet. That takes just a few milliseconds. Depending on the N-FEE mode, we can then
expect data packets filling up until 4s after the time code. There can be less or no data packets, leaving
more time for commanding. Commanding the N-FEE is done by sending SpaceWire RMAP requests to
the N-FEE in that 2s+ timeslot. When we send a command from the Python prompt to the N-FEE, it
arrives in the command queue at the DPUProcessor and will be sent to the N-FEE in the next 2s+
command timeslot. When the Command enters the Queue at the beginning of the readout period, i.e.
right after the timecode, maximum 4s will pass before the command is actually send to and executed
on the N-FEE. All this time, the Python prompt will be blocked while waiting for the response. The
next command can only be sent on return of the previous. So, we have two issues to solve, (1) the
duration and blocking of all the steps in the commanding chain, and (2) sending more than just one
command to the N-FEE in the same timeslot.

PLATO-KUL-PL-MAN-0003 KU Leuven

14.1. DPU Control Server and DPU Processor | 73

XXXXX: add here how we solved this!

The priority queue is also a command queue, but the commands are not sent to the N-FEE. Instead, the
commands are executed in the DPUProcessor and are used to either get information about the state of
the N-FEE or set/get the internal state of the DPUProcessor. The state of the N-FEE is mirrored and kept
up-to-date by the DPUProcessor during the readout cycle. Priority commands are typically to request
e.g. the N-FEE mode, or to set an internal DPU parameter. While the command queue is checked only
during the allowed RMAP communication period, the priority queue is checked and executed several
times during the readout cycle.

The DPU Processor has two ZeroMQ message queues on which it publishes specific information. One
message queue is the data distribution queue on which the following information is published. All
messages published on this queue are multipart messages with the following IDs to which you can
subscribe.

SYNC_TIMECODE

Whenever the N-FEE sends a timecode to the DPU, the timecode is published on the message queue
as a tuple with (timecode, timestamp). The timecode is an integer number cycled on the sequence
from 0 to 63 and incremented on every sync pulse, both 200ms and 400ms pulses. Since the N-FEE
does not have an internal clock that keeps the time, we associate a timestamp with the time of
reception of the timecode by the DPU Processor. The timecode itself is created and send by the N-
FEE to the DPU over the SpaceWire interface within 1μs after receiving the sync pulse from the
AEU. Reception at the DPU Processor, creating the timestamp etc. results in a delay of approximate
15ms.

SYNC_HK_PACKET

Right after the timecode, the N-FEE sends out a housekeeping packet. When this packet is received
at the DPU Processor, it is published on the data distribution message queue as a tuple with
(HousekeepingPacket, timestamp). Again, the timestamp is the time of reception at the DPU
Processor.

SYNC_DATA_PACKET

When the N-FEE is in FULL_IMAGE mode with digitise_en=1 it will send out data packets
containing the image data from the readout. Depending on the number of rows that are digitised
the N-FEE will send out a variable number of data packets. Each of these packets are published on
the data distribution queue as a tuple with (DataPacket, timestamp). The DataPackets can be of
type DataDataPackets or OverscanDataPackets.

N_FEE_REGISTER_MAP

At the start of every readout cycle, the DPU Processor puts a Numpy array of type UINT8 on the
message queue. This Numpy array is the memory map that contains and defines the Register Map.
Note, that the data from this memory map is a copy, a mirror, of the memory map in the N-FEE.

NUM_CYCLES

The internal DPU Processor counter num_cycles is used to allow the user to command a number of
readout cycles in full image mode. This counter is needed because the N-FEE has no concept of
'number-of-images', i.e. you can not ask the N-FEE to take 10 images. Nevertheless, we wanted this
functionality in our test scripts, and that is what num_cycles is. If you command num_cycles=10 the
N-FEE will be put into full image mode, generate image data for 10 readout cycles, and is after that

KU Leuven PLATO-KUL-PL-MAN-0003

74 | 14. The System Under Test (SUT)

instructed to go to DUMP mode (see [dump-mode]).

The data distribution message queue is used by processes that need to handle image data like the DPU
GUI. There is a second message queue used by the DPU Processor to publish monitoring information.
In addition to SYNC_TIMECODE, SYNC_HK_PACKET, NUM_CYCLES, the following information is
published on this message queue:

HDF5_FILENAMES

A list of HDF5 path names that are ready and available for processing.

SYNC_ERROR_FLAGS

On each readout (every 200ms and 400ms pulse), after all housekeeping and data packets have
been received from the N-FEE, the DPU Processor reads out the housekeeping memory area from
the N-FEE. This memory area is at that time just updated by the N-FEE and therefore can contain
new information with respect to the beginning of the readout. Especially the error flags –which are
in the housekeeping information– are of interest because they can indicate errors that happened
during the readout while the original HK packet might not yet contain any errors. The error flags
are sent as a tuple with (error flags, frame counter, timestamp). The error flags is an integer that
represents a bitfield of (currently) 16 flags.

Any process can subscribe to the monitoring queue easily by using the DPUMonitoring class. For
example, the following code snippet connects to the DPU Processor monitoring queue, waits until the
next timecode is received, then executes some code and waits for the next timecode.

from egse.dpu import DPUMonitoring

with DPUMonitoring() as moni:
 while moni.wait_for_timecode():
 ...

If you need more control over the monitoring and the actions, you can subscribe to the DPU Processor
monitoring queue directly. The following code snippet waits for an error flag and raises an alert
message on Slack whenever the error flag is not 0:

import zmq
import pickle
from egse.zmq import MessageIdentifier
from egse.slack import send_alert

hostname = "localhost"
port = 30102
sub_id = MessageIdentifier.SYNC_ERROR_FLAGS.to_bytes(1, byteorder='big')
context = zmq.Context()

receiver = context.socket(zmq.SUB)
receiver.connect(f"tcp://{hostname}:{port}")
receiver.subscribe(sub_id)

while True:
 try:
 sync_id, message = receiver.recv_multipart()
 sync_id = int.from_bytes(sync_id, byteorder='big')
 error_flags, frame_counter, timestamp = pickle.loads(message)
 msg = f"{MessageIdentifier(sync_id).name}, {error_flags = } for {frame_counter = }"

PLATO-KUL-PL-MAN-0003 KU Leuven

14.1. DPU Control Server and DPU Processor | 75

 print(msg)
 if error_flags:
 send_alert(msg)
 except KeyboardInterrupt:
 print("KeyboardInterrupt caught!")
 break

receiver.close(linger=0)

14.1.1. The Inner Loop

The inner loop is the workhorse of the DPUProcessor, it has three main functions (1) reading
information and data that is provided by the N-FEE, (2) sending that data to the storage manager, and
(3) send commands to the N-FEE. In pseudo language, the inner loop performs the following functions:

while True:
 try:
 timecode = read_timecode() ①
 save_timecode(timecode)

 hk_packet = read_housekeeping_packet() ②
 save_housekeeping(hk_packet)

 update_internals() ③
 process_high_priority_commands() ④

 if FULL_IMAGE_MODE: ⑤
 until last_data_packet:
 data_packet = read_data_packet()
 save_data_packet(data_packet)

 hk_data = read_hk_data() ⑥
 save_hk_data(hk_data)

 for each cycle: ⑦
 save_attributes(obsid, num_cycles, register_map)
 publish_data_and_monitoring_info()
 except:
 report error but do not abort ⑧

 process_high_priority_commands() ⑨

 if commands_on_queue:
 send_commands_to_nfee() ⑩

1. The first information that the N-FEE sends out is the timecode. The timecode is an integer that
cycles through the values from 0 to 63 (a six bit number). The timecode is sent within 2μs from the
sync pulse that the N-FEE receives from the N-AEU, but it is not associated with a timestamp. Since
the N-FEE has no concept of on-board time, the DPUProcessor will have to associate a timestamp
with the timecode. That timestamp is the time of reception of the timecode and it will be typically
a few ms delayed. This timestamp is saved in the HDF5 file as an attribute of the timecode.

2. The next thing the N-FEE sends out over the SpaceWire interface is a housekeeping packet. It is
sent immediately after the timecode. Also here, the DPUProcessor generates a timestamp at
reception and saves this timestamp together with the complete housekeeping packet.

3. The DPUProcessor keeps internal information and bookkeeping parameters in order to mimic the
state of the N-FEE FPGA. This information is updated from the register map and is dependent on

KU Leuven PLATO-KUL-PL-MAN-0003

76 | 14. The System Under Test (SUT)

where we are in the readout cycle, e.g. start of the cycle, long-or-short pulse, etc.

4. Since the DPUProcessor keeps itself in sync with the state of the N-FEE, there is no need to consult
the N-FEE about its state over an expensive SpaceWire RMAP request. So, if a user wants to know
the operating mode of the N-FEE or other state information like e.g. the current frame number or
the synchronisation mode, this information comes directly from the DPUProcessor internal state
instead of passing the request through to the N-FEE. That is what high priority commands do, they
do not wait for the safe time range where we can send RMAP commands, but return immediately
with the answer loaded from the internal state of the DPUProcessor.

5. When the N-FEE is in full image mode, the CCDs are read out and image data is sent out over the
SpaceWire. Depending on the amount of data this can take up to about 4 seconds (a little bit more
is possible). The amount of image data depends on a few register parameters, namely, v_start and
v_end define the number of rows that are read out, h_end defines the number of columns to read
out per CCD side, sensor_sel specifies which CCD side has to be readout (or both). So, we can read
out only part of the CCDs and this will result in less data being transferred and less time to spent
in this loop. Reading out only part of the CCD is called partial readout mode.

6. When the N-FEE has finished reading out the CCDs and sending out the image data, the
housekeeping area in the N-FEE memory map will be updated with the current state of the HK
parameters. This updated housekeeping will be important especially for status information and
error flags. The error flags can contain information about transmission buffers that overflow,
EDAC[1], link errors etc. So, at this point we read out the updated housekeeping data and stores that
next to the original HK packet.

7. For each readout cycle we have some additional things to do before we will send RMAP commands
to the N-FEE. This pseudo statement might be a little misleading, it’s not a foreach loop, but a
condition that we need to execute the two enclosing statements for every readout cycle (aka
frame). So, for each frame we will save important attributes that are used by the data processing,
and we will also publish the data we have and any required additional information on the
message queue. Other processes can subscribe to the message queue to be informed about the
state of the N-FEE or to receive data for visualisation or processing (e.g. the DPU GUI or the FITS
generation).

8. In principle, the pseudo commands that we have described upto now define one complete cycle of
N-FEE information, i.e. timecode, housekeeping, and data. If we would never have to change the
state of the N-FEE and would not send commands over the SpaceWire, the loop would repeat here.
Of course, we want to do other things and communicate with the N-FEE and that will be described
in the following paragraphs 8-10, but also important is to understand that things can go wrong and
exceptions can be raised because of SpaceWire hick-ups, timeouts, disk full errors from the
storage, and many more. That is why we put all the previous commands in a try clause (the
statements between the try and except keywords). Whenever something goes wrong and an
exception is raised, the except clause is executed and the error is logged with possibly extra
debugging information. At this point we do not (as is usually done elsewhere) abort and exit the
inner loop, but we continue with the execution of the remaining statements.

We do not want to abort because the DPUProcessor should never stop running. The idea is that,
whenever an error occurs, the remaining statements from the try clause are skipped, the error is
reported, we have the opportunity for high priority commands or to send commands to the N-FEE,
and then cycle through until the next timecode. In case of a link corruption or when the DPU to N-
FEE communication is out of sync, it might take a few loops to recover on the next timecode. But,
eventually, a next timecode will be detected and the DPUProcessor can recover its communication

PLATO-KUL-PL-MAN-0003 KU Leuven

14.1. DPU Control Server and DPU Processor | 77

and its state.

If we do not receive information from the N-FEE on the SpaceWire, this is handled as an exception
and a NoBytesReceivedError will be raised, also, waiting for the next timecode can raise a
TimecodeTimeoutError. In these two cases, we will fall into the except clause, but no error will be
logged and the execution will continue as normal after the except clause. This scenario will
happen very frequently while waiting for SpaceWire packets or for the next timecode.

9. After receiving the image data and updated housekeeping its time again to process any high
priority commands from the queue.

10. The last thing to do before repeating the inner loop is to send any RMAP commands that are
waiting on the command queue. One of the first commands that will be sent by default is to clear
any error flags, after that a command will be read from the queue, processed and send to the N-
FEE as an RMAP request. All commands that are sent to the N-FEE are also saved in the HDF5 file.

That concludes our inner loop for the DPUProcessor. Please keep in mind that this description is a
simplification of the real inner loop and you will need to carefully study the code before making any
changes.

14.2. The N-FEE Simulator
TBW

14.3. CCD Numbering
Throughout the PLATO camera test campaigns, the CCD numbering, used throughout the CGSE, will
remain the same (see figure below), but the underlying numbering, used by MSSL for the N-FEE will
be different for EM, PFM, and FM.

KU Leuven PLATO-KUL-PL-MAN-0003

78 | 14. The System Under Test (SUT)

14.3.1. MSSL Numbering

The MSSL numbering of the CCDs is used in:

• the SpW packets with the raw image data;

• the N-FEE register map (used for configuration and queries).

14.3.2. Conversions MSSL ⇆ CGSE

Originally, the conversion back and forth between the MSSL and CGSE numbering was configured in
egse.fee in the following variables:

• CCD_BIN_TO_ID: for the conversion from MSSL numbering to CGSE numbering (used in the FITS
persistence layer, DPU UI and HDF5 viewer);

• CCD_BIN_TO_IDX: for the conversion from MSSL numbering to display index in the DPU UI;

• CCD_ID_TO_BIN: for the conversion from CGSE numbering to MSSL numbering;

• CCD_IDX_TO_BIN.

The DEFAULT_CCD_READOUT_ORDER variable holds the default order of the CCD readout, as defined in the
N-FEE register.

14.3.3. Register map

14.3.4. Moving to the Setup

The idea is that these conversions will be moved to the setup file, under
setup.camera.fee.ccd_numbering. The name of the relevant parameters is the same as above, but in
small case.

14.3.5. EM

The CCD numbering in the CGSE and the connections to the PCBs for EM are shown in the figure
below. Between brackets are the CCD numbers by MSSL. Not only do the CCD numbers not match
between MSSL and the CGSE, but the connections between the CCDs and the corresponding PCBs is
incorrect. The latter will be corrected for in PFM.

PLATO-KUL-PL-MAN-0003 KU Leuven

14.3. CCD Numbering | 79

Reference Documents

The entries in the N-FEE register map for EM are stipulated in the following reference document:

N-FEE ICD PLATO-MSSL-PL-ICD-0002 (issue 12.0, 05/05/2022)

Register map (Attachment) PLATO-MSSL-PL-PL-FI-0003_1.0_N-
FEE_EM1_EM2_Register_MAP.xlsx

Common EGSE

CDD conversions

• CCD_BIN_TO_ID: [3, 4, 1, 2]

• CCD_BIN_TO_IDX: [2, 3, 0, 1]

• CCD_ID_TO_BIN: [0, 0b10, 0b11, 0b00, 0b01]

• CCD_IDX_TO_BIN: [0b10, 0b11, 0b00, 0b01]

CCD IDs

• CCD1: 0b10

• CCD2: 0b11

• CCD3: 0b00

• CCD4: 0b01

Default readout order

Deviations from the N-FEE ICD

Incorrect connection between the PCBs and the CCDs:

KU Leuven PLATO-KUL-PL-MAN-0003

80 | 14. The System Under Test (SUT)

• According to the spreadsheet for EM (see above), the default CCD readout order is 228 (decimal
value). This is supposed to correspond to the requested CCD readout scheme 1 - 2 - 3 - 4 (e.g. when
going to dump mode), but - due to the incorrect connections between the PCBs and the CCDs - this
actually corresponds to 3 - 4 - 1 - 2.

• To compensate for this, the default CCD order as configured in the setup does not correspond to
what is in the spreadsheet: instead of using 0b11100100 (228), we use 0b01001110 (0x4E or 78).

CGSE Configuration

• Register map: plato-cgse-conf/data/common/n-fee: n_fee_register_em_v2.yaml

• HK map: plato-cgse-conf/data/common/n-fee: n_fee_hk_em_v2.yaml

• Sensor calibration: plato-cgse-conf/data/common/n-fee: nfee_sensor_calibration_em_v3.yaml

14.3.6. PFM

For PFM, the following modifications will be applied w.r.t. EM:

• The CCDs will be connected to the PCB with the same number;

• Part of the entries in the N-FEE register map will move places.

The CCD numbering and the connections to the PCBs for PFM are shown in the figure below. Note that
the underlying MSSL numbering is the same as for EM.

Reference Documents

The entries in the N-FEE register map for PFM are stipulated in the following reference document:

N-FEE ICD PLATO-MSSL-PL-ICD-0002 (issue 12.0, 05/05/2022)

PLATO-KUL-PL-MAN-0003 KU Leuven

14.3. CCD Numbering | 81

Register map (Attachment) PLATO-MSSL-PL-PL-FI-0003_1.0_N-
FEE_PFM_Register_MAP.xlsx

Common EGSE

CDD conversions

• CCD_BIN_TO_ID:

• CCD_BIN_TO_IDX:

• CCD_ID_TO_BIN:

• CCD_IDX_TO_BIN:

CCD IDs

• CCD1:

• CCD2:

• CCD3:

• CCD4:

Default readout order

CGSE Configuration

• Register map: plato-cgse-conf/data/common/n-fee: n_fee_register_pfm_v1.yaml

• HK map: plato-cgse-conf/data/common/n-fee: n_fee_hk_pfm_v1.yaml

• Sensor calibration: plato-cgse-conf/data/common/n-fee: nfee_sensor_calibration_em_v3.yaml

14.3.7. FM

The CCD numbering and the connections to the PCBs for FM are the same as for PFM.

Reference Documents

The entries in the N-FEE register map for FM are stipulated in the following reference document:

N-FEE ICD PLATO-MSSL-PL-ICD-0002 (issue 12.0, 05/05/2022)

Register map (Attachment) PLATO-MSSL-PL-PL-FI-0003_1.0_N-
FEE_PFM_Register_MAP.xlsx

Common EGSE

CDD conversions

• CCD_BIN_TO_ID:

KU Leuven PLATO-KUL-PL-MAN-0003

82 | 14. The System Under Test (SUT)

• CCD_BIN_TO_IDX:

• CCD_ID_TO_BIN:

• CCD_IDX_TO_BIN:

CCD IDs

• CCD1:

• CCD2:

• CCD3:

• CCD4:

CGSE Configuration

• Register map: plato-cgse-conf/data/common/n-fee: n_fee_register_fm_v1.yaml

• HK map: plato-cgse-conf/data/common/n-fee: n_fee_hk_fm_v1.yaml

• Sensor calibration: plato-cgse-conf/data/common/n-fee: nfee_sensor_calibration_em_v3.yaml

Default readout order

14.4. The F-FEE Simulator
TBW

[1] EDAC stands for Error Detection And Correction

PLATO-KUL-PL-MAN-0003 KU Leuven

14.4. The F-FEE Simulator | 83

15. SpaceWire
This chapter describes all facets of the SpaceWire interface from and to the camera. We use the 4Links
Diagnostic SpaceWire Interface (DSI) with one port to connect to the N-CAM and 4 ports to connect to
the F-CAM. The following topics will be explained in this chapter.

• The SpaceWire Lab interface

• SpaceWireInterface class

◦ SpaceWireOverDSI

◦ SpaceWireOverZeroMQ

• Connecting to the device

◦ Speed

◦ active link

• testing your connection

15.1. The SpaceWire Lab Interface – Hardware
In the lab we use a SpaceWire interface from 4Links. This company provides devices to communicate
over SpaceWire, but also to monitor, diagnose, develop your SpaceWire connections.

Two of these devices are used in the different institutes that test the PLATO cameras, i.e. the
Diagnostic SpaceWire Interface (DSI) and the portable version of that (P-DSI). These devices have 2, 4,
or 8 SpaceWire ports that can work concurrently at a speed up to 400Mbps. A 1Gbps Ethernet port
connects your server to the DSI. 4Links provides software to drive the DSI and communicate with the
camera over SpaceWire. The main component is a dynamic shared library EtherSpaceLink which is a C
library that provides functionality to read and write SpaceWire packets from the active ports.

A Python wrapper module exists and is also delivered by 4Links, but at the time we were developing
the CGSE, this Python interface was not available yet. We have implemented our own wrapper
functions using the ctypes Python module.

The setup that is used in the lab is shown in the figure below. The N-CAM is connected to SpW port 1
on the DSI and the egse-server is connected to the Ethernet port.

The IP address of the DSI is different for each test house and is therefore configured in the local
Settings file. The DSI is listening on TCP port 4949.

KU Leuven PLATO-KUL-PL-MAN-0003

84 | 15. SpaceWire

15.2. The SpaceWire Interface class – Software
The SpaceWireInterface class is the high-level base class that is used to communicate with a SpaceWire
device. This class is intended as an interface class and shall not be used directly. We have provided
two concrete sub-classes that inherit from the SpaceWireInterface, i.e. the SpaceWireOverDSI and the
SpaceWireOverZeroMQ. The interface defines the following methods:

connect()

open a connection to the SpaceWire interface. All parameters that are needed to establish the
connection must be passed when instantiating the concrete sub-class.

disconnect()

disconnect from the SpaceWire interface.

configure()

configure the SpaceWire device interface. All parameters that are needed to configure the
connection must be passed when instantiating the concrete sub-class.

flush()

flush any remaining data from the wire.

send_timecode(timecode: int)

send a timecode packet.

read_packet(timeout: int = None)

read a SpaceWire packet. The packet is returned as a bytes object and can be converted using the
factory method SpaceWirePacket.create_packet().

write_packet(data: bytes)

write a SpaceWire packet.

read_register(self, address: int, length: int = 4, strict: bool = True)

read data from the register map of the camera. There are restrictions on the address space and the
number of bytes that can be read. The strict=True argument enforces these restrictions.

write_register(self, address: int, data: bytes)

write a register to the given address location in the memory map of the camera. The data shall be
at least 4 bytes (only 4 bytes will be written).

read_memory_map(self, address: int, size: int)

read data from the memory map of the camera. The size of the data that can be read is dependent
on the address space from which the data is read.

Sub-classes of the interface class can implement additional methods that are specific for that device,
but only the interface methods shall be used in processes like the DPU Processor and the FEE
Simulator.

The interface class can also be used as a context manager where it will open the connection upon

PLATO-KUL-PL-MAN-0003 KU Leuven

15.2. The SpaceWire Interface class – Software | 85

entry and close the connection upon exit or when an exception happens.

with SpaceWireOverDSI(dsi_address) as transport:
 transport.configure()

 while True:
 flags, data = transport.read_packet(timeout=2000)

 if 0 <= len(data) <= 1:
 break

 ...

Note that the connection is only established by entering the with statement, so, what usually is done is
that the SpaceWireInterface sub-class is instantiated at a higher level in a caller function and past into
the functions that use it.

transport = SpaceWireOverZeroMQ(endpoint="tcp://localhost:5555", identity="PEER-TO-PEER")

...

def serve(transport: SpaceWireInterface):

 with transport:
 transport.configure()
 ...

15.2.1. Connecting to the DSI

TBW

• Set/Get speed

• Set/Get active port

• Low-level functions: esl_*

15.3. Testing your connection
TBW

Using the unit tests….

15.4. The RMAP Protocol
TBW

Give a brief overview of the RMAP protocol as it is used in PLATO and describe how RMAP and DSI
commands and functions work together.

• ReadRequest and ReadRequestReply

• WriteRequest and WriteRequestReply

KU Leuven PLATO-KUL-PL-MAN-0003

86 | 15. SpaceWire

• …

15.5. A more elaborate example
In this section we will present a more in-depth example of both connections of the
SpaceWireInterface, i.e. the sending and the receiving part.

PLATO-KUL-PL-MAN-0003 KU Leuven

15.5. A more elaborate example | 87

16. Device Simulators
• Different ways to write a simulator

◦ implement a Simulator class that can replace a Controller class

◦ implement a simulator process

16.1. The OGSE Simulator
The OGSE simulator by default listens on TCP port 4181 for incoming connections from the OGSE
Controller. The controller can be used stand-alone in a Python REPL for testing or can be part of the
OGSE Control Server as the last step in the commanding chain.

Start the OGSE simulator as follows:

$ ogse_sim start

The OGSE simulator will listen for incoming connections. There can be only one process connected to
the OGSE simulator. This behaviour is similar as the hardware device, which only accepts one
connection. When a connected process disconnects, the OGSE simulator will accept a new connection.

The OGSE simulator can be killed by pressing CTRL-C in the Terminal where the simulator is running.
Alternatively, you can send a TERM or HUP signal to the process:

$ ps -ef|grep ogse
459800007 21334 1908 0 2:20PM ttys002 0:01.02
/Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/rik/git/plato-
common-egse/venv38/bin/ogse_sim start
$ kill -TERM 21334

The OGSE simulator has of course no interlock jack that you can pull out to immediately power off the
system. Nevertheless, we can simulate this behaviour by sending a user signal to the ogse_sim process.
Sending a USR1 signal will open the interlock when it is closed, and close it when it is open. The USR1
signal works as a toggle for the interlock.

$ kill -USR1 <PID> ①

① replace <PID> with the correct process identifier

Check the interlock state with the command method get_interlock():

>>> ogse = OGSEController()
>>> ogse.connect()
>>> ogse.get_interlock()
'interlock: OPEN'

The following commands have been implemented in the simulator:

KU Leuven PLATO-KUL-PL-MAN-0003

88 | 16. Device Simulators

status() return the status of the power, lamp, interlock, laser, power
meters, and attenuator

get_interlock() state is OPEN or CLOSE

get_power() state is On or OFF

get_lamp() state is ON or OFF

get_laser() state is ON or OFF

get_lamp_fault() state is ERROR or NO-ERROR

get_controller_fault() state is ERROR or NO-ERROR

get_psu() state is ON or OFF

get_operate() state is On or OFF

get_flags() the state of all parameters encoded in a single number formatted
in hexadecimal and binary

get_power_and_temperature() returns the power and temperature reading of both power-meters

ldls_status() returns the state of the connection to the LDLS device, state is OK
or ERROR

pm_status() returns the state of the connection to the power-meter devices,
state is OK or ERROR

att_get_level() returns a dictionary with the following keys: att_moving [bool],
att_factor [float], and att_index [int]

att_status() returns the state of the connection to attenuator device, state is OK
or ERROR

att_set_level_index(<index>) Sets attenuator to the level closest to <index>

att_set_level_factor(<factor>) Sets attenuator to the level closest to <factor>

att_set_level_position(<wheel1>,
<wheel2>)

sets the two filter wheels to the given position, each wheel has 8
positions, allowed values are 1 to 8.

att_level_up() selects the attenuation one step higher than the current value, it
has no effect if the current level is already the highest

att_level_down() selects the attenuation one step lower than the current value, it
has no effect if the current level is already the lowest

version() returns the version of the hardware controller software

power_on() turns the power supply on

power_off() turns the power supply off

operate_on() turns the laser on

operate_off() turns the laser off

exit()

quit()

reset()

PLATO-KUL-PL-MAN-0003 KU Leuven

16.1. The OGSE Simulator | 89

Part IV — Essential Toolkit and
Infrastructure Elements

KU Leuven PLATO-KUL-PL-MAN-0003

90 |

17. Essential Toolkit
This chapter describes the tools necessary for the software’s operation, even if they’re not the main
features of the system.

17.1. The NavigableDict class
This class serves as a representation of a nested Python dictionary, enabling navigation through its
contents using dot notation, offering an alternative to traditional keyword-based access.

Let’s create a nested dictionary with some configuration information:

config = {
 "server": {
 "host": "localhost",
 "port": 8080,
 "secure": True,
 },
 "logging": {
 "level": "info",
 "destinations": ["console", "file"],
 "file": {
 "path": "/var/log/app.log",
 "max_size": "10MB",
 "backup_count": 5
 }
 },
}

Both examples below are equivalent:

>>> print(config)
{
 'server': {'host': 'localhost', 'port': 8080, 'secure': True},
 'logging': {'level': 'info', 'destinations': ['console', 'file'], 'file': {'path': '/var/log/app.log',
'max_size': '10MB', 'backup_count': 5}}
}
>>> log_file = config["logging"]["file"]["path"]
>>> print(log_file)
/var/log/app.log

and

>>> from egse.setup import NavigableDict
>>> config = NavigableDict(config)
>>> print(config)
NavigableDict
├── server
│ ├── host: localhost
│ ├── port: 8080
│ └── secure: True
└── logging
 ├── level: info
 ├── destinations: ['console', 'file']
 └── file
 ├── path: /var/log/app.log

PLATO-KUL-PL-MAN-0003 KU Leuven

17.1. The NavigableDict class | 91

 ├── max_size: 10MB
 └── backup_count: 5
>>> log_file = config.logging.file.path
>>> print(log_file)
/var/log/app.log

TBW

• Special entries: class//, factory//, int_enum//, csv//, pandas//, yaml//

• memoized keys

• private attributes

• raw values

• ALL keys shall be of type 'str'

17.2. The SubProcess class
TBW

17.3. The ProcessStatus class
TBW

17.4. The RegisterMap
TBW

===

KU Leuven PLATO-KUL-PL-MAN-0003

92 | 17. Essential Toolkit

18. Infrastructure Elements
This chapter describes the components that are part of the underlying structure that supports the
software’s functionality. We will describe support functions for working with binary data like bit-
fields or checksums, describe special decorators and how resources are used, there will be an
explanation of support functions to find files, and use environment variables, and many more.

TBW

18.1. Bits, Bytes and Hex
TBW

18.2. Reloading functions and modules
TBW

18.3. Time and Timing
TBW

18.4. Resources
TBW

PLATO-KUL-PL-MAN-0003 KU Leuven

18.1. Bits, Bytes and Hex | 93

Part V — Monitoring

KU Leuven PLATO-KUL-PL-MAN-0003

94 |

19. Metrics, Prometheus and Grafana
The CGSE provides mechanisms for monitoring metrics from different processes and devices with
Grafana. This chapter will explain how the metrics are defined for your favorite process and device,
how their values are gathered and propagated to the Prometheus server and how Grafana queries
Prometheus to create timeseries that are displayed in your browser.

19.1. Setup Prometheus
☐ what should go in the prometheus-egse-server.yml

☐ what about the timestamps that are associated with the metrics?

19.2. Define your metrics
Depending on your needs, you can choose different methods for the timestamp of your metrics. We
will discuss three ways to get and use metrics timestamps:

1. the timestamp for the metric comes with the device housekeeping.

2. the timestamp is created by the device controller when the metric is retrieved.

3. the timestamp is created by Prometheus and is the time of querying the http server that is started
by each of the control servers.

Option 1. is the best way for timestamps for your metrics when the accuracy of the time when the
metric was retrieved is important. The timestamp then itself is a metric (Gauge) and might need to be
converted to a float that represents the time in the expected way, depending on the target application.

import prometheus_client as prom

x = prom.Gauge("x", "the metric")
x_ts = prom.Gauge("x_ts", "the metric timestamp")

Option 1: timestamp is a metric

x.set(<the value of the parameter>)
x_ts.set(<the timestamp for the value as a float>)

Option 2. can be used when the device housekeeping doesn’t contain the timestamp of the metrics.
This method can be a few to a few tens of milliseconds off depending on the device response time. For
some devices and depending on the duration of the query and the number of parameters this can be
even longer. One example is the DAQ6510 when tens of temperatures are scanned several times
before returning an average value. A full scan can take up to 20s or more.

import prometheus_client as prom
import datetime

x = prom.Gauge("x", "the metric")
x_ts = prom.Gauge("x_ts", "the metric timestamp")

Option 2. timestamp is set by the device controller

PLATO-KUL-PL-MAN-0003 KU Leuven

19.1. Setup Prometheus | 95

x.set(<the value of the parameter>)
x_ts.set(datetime.datetime.now(tz=datetime.timezone.utc).timestamp())

Option 3. is used when the exact time is not really important and may be a few (tens of) seconds off.
This is the case for most temperature measurements evolving slowly.

The time used by Prometheus is the unixtime which means localtime (not UTC) and Epoch 01/01/1970,
excluding leap seconds. This is the same as what is returned by the Python time.time() function.

KU Leuven PLATO-KUL-PL-MAN-0003

96 | 19. Metrics, Prometheus and Grafana

https://en.wikipedia.org/wiki/Unix_time

Part VI — Test Scripts
This section of the development manual is about developing test scripts to run the PLATO camera
performance tests. If you were looking for unit tests, see Part VII — Unit Testing and beyond.

PLATO-KUL-PL-MAN-0003 KU Leuven

| 97

20. Observations
☐ What are observations?

☐ Why do we need them?

KU Leuven PLATO-KUL-PL-MAN-0003

98 | 20. Observations

21. Building Blocks

☑ what are building blocks?

☑ why do we need them?

☑ where do they live?

☑ how are they implemented?

◦ only keyword argument

☑ how are they executed?

◦ all keyword arguments must be explicitly provided → explain why

☐ generate_command_sequence()????

☐ need to be executed within an observation (between start_ and end_observation() or by execute())
to enforce the creation of a unique obsid.

A building block is a Python function implementing the commands corresponding to a logical entity
within a test or denoting an entire test (called the “test-script”). The function is decorated with a
@building_block and has several benefits and restrictions that will be explained in this section. A
typical small building block is shown below:

@building_block
def set_trp1(temperature: float) -> None:
 """
 Set the temperature setpoint for TRP1.

 Args:
 temperature: Temperature setpoint for TRP1 [°C].

 Raises:
 If a task is already running in the TCS EGSE, an Abort is raised.
 """

 if is_task_running():
 raise Abort("Cannot change the TRP1 setpoint, a task is running on the TCS")

 tcs: TCSInterface = GlobalState.setup.gse.tcs.device
 tcs.set_parameter(name="ch1_tset", value=temperature)
 tcs.commit()

A building block can only run within the context of an observation and all the arguments need to be
explicitly provided as keyword arguments. The reason for this is the concept of explicit is better than
implicit which definitely holds for commanding test equipment and certainly a million dollar PLATO
Camera. The requirement to explicitly provide all arguments with their name reduces the chance for
making errors and prevents changes in argument defaults. The above building block will therefore be
executed as follows:

from camtest.commanding import tcs

start_observation("Configure the TCS EGSE")
...

PLATO-KUL-PL-MAN-0003 KU Leuven

21. Building Blocks | 99

tcs.set_trp1(temperature=-70.0)
...
end_observation()

All functions that result in a change in the systems behaviour or a change in the test equipment shall
be decorated as a building block. Status functions and so-called getters usually are not building blocks.

Building blocks implement some safeguards, imposing a number of limitations on the code:

• Building blocks cannot be called recursively. Beware of building blocks calling other building
blocks. Avoid too many layers. Avoid functions calling building blocks.

• At run time, the names and the values of every argument of a building block must be explicitly
given, even if the argument is None. Building blocks with many parameters are hence strongly
discouraged.

• Positional arguments are rejected in building blocks, all arguments must be specified as keyword
arguments.

• All arguments must be given the default value None in the building block definition.

The building block concept is part of the PLATO Test Scripts and not of the Common-EGSE. All building
blocks that are defined will therefore live in the plato-test-scripts repository, mostly in the
camtest.commanding module. The @building_block decorator itself is defined in the module
camtest.core.exec.

The building block decorator is defined as def building_block(func: Callable) → Callable: which
means the decorator must be used without brackets () or arguments. The function which is decorated
must be defined with keyword only arguments that all have a default value of None.

The building block decorator performs the following actions and checks for the function at import
time:

• the decorated function func is attributed as a building block, i.e. the func will get the attribute
BUILDING_BLOCK_FUNC set to True. This is internally used in the execute function to ensure the
executed function is a building block.

• the decorator will check if a YAML file exists with the definition of default keyword arguments.
The location of the YAML file is fixed.

Possible future change

Consider putting building block defaults in one defaults.yaml file located at the same
location as the building block definition. That would create one file for all defaults at
that location, instead of one file for each building block. What to do when two
building blocks have identical names, but defined in a different module?

The building block decorator performs the following actions and checks for the function at runtime:

• check that no positional arguments are passed into the function,

• fill the default value for keyword arguments that were not passed into the function, provided the
function has defaults,

KU Leuven PLATO-KUL-PL-MAN-0003

100 | 21. Building Blocks

• check if there are still missing arguments, required keyword arguments that have no default and
are not provided in the call.

Then, before the function is actually called, the start_building_block() function is called. This will
register the building block in the observation context and add the command to the command
sequence in the GlobalState if this is a dry run. A corresponding end_building_block() will de-register
the function from the observation context and the command sequence.

The overhead for a function decorated as a building block is about 350μs.

☐ higher level test house independent commanding scripts

PLATO-KUL-PL-MAN-0003 KU Leuven

21. Building Blocks | 101

22. The Tasks GUI
The Tasks GUI is a generic GUI that allows the test operator to execute standard tasks by clicking the
task button and provide the necessary arguments. An example of such a Task GUI is given in the
screenshot below.

The Task GUI is organised in three panels that are arranged vertically in the window. The top panel is
the toolbar to control the Jupyter kernel, the panel at the center contains all the task buttons
organised by category, the bottom panel is the console where the output and error messages of the
tasks will appear.

When you click on a task button, a fourth panel will appear above the console panel. This is the
arguments panel where you can specify all arguments required for the task. Default arguments are
shown in gray and can be left to use or overwritten to change. The arguments panel of the selected
'Analyse' task for the 'Circle around optical axis' group is shown below.

KU Leuven PLATO-KUL-PL-MAN-0003

102 | 22. The Tasks GUI

This 'Analyse' task accepts 5 arguments: a list of observation identifiers,the location of the reduced
data, an option to save the generated plots in a given output folder, and a flag to make the tasks output
more verbose. Since this task will produce plots, we want to execute it as a GUI App. Finally, the 'Close'
button hides the arguments panel again and deselcts the task button, and the 'Run' button executes
the task.

Other task GUIs will be developed for specific purposes. The CSL Operator GUI is specifically
developed for CSL to execute alignment and focusing measurements. Other test houses will develop
their own tasks and we have also generic task GUIs like the Contingency GUI that is used at all test
houses and quickly switches devices on or off, and allows to perform simple device configurations. An
early version of the GUI is shown below, you can clearly see this GUI has the familiar layout and
functionality of any Task GUI.

PLATO-KUL-PL-MAN-0003 KU Leuven

22. The Tasks GUI | 103

In the rest of this chapter we will explain how these GUIs are created and how you can develop your
own version for your specific tasks.

22.1. The package Layout
To build up the Task GUI, we distinguish the task button as a function, several of these functions can
be grouped in a Python module (a .py file) and all the modules plus additional information needed for
the Task GUI is kept in a Python package. The CSL Operator GUI shown above, is located in the
package camtest.csl and has the following layout:

camtest.csl
 ├──────── __init__.py
 ├──────── camera.py
 ├──────── circle.py
 ├──────── hartmann.py
 ├──────── hexapod.py
 ├──────── huber.py
 ├──────── icons
 ├──────── ogse.py
 ├──────── refmodel.py
 └──────── single.py

Each of these .py files form a group of buttons in the above Task GUI. The __init__.py file is special, it
defines camtest.csl as a package, and it defines the command to start the Task GUI [see XXXXX]. The
icons folder contains the graphics for the task buttons and the application icon.

22.2. Defining a Task
Let’s build our own simple Task GUI and start with the most stated and useless function, Hello, World!.
We will eventually build a Task GUI with tasks of increasing complexity and guide you through the
different steps.

KU Leuven PLATO-KUL-PL-MAN-0003

104 | 22. The Tasks GUI

Create a folder yakka[1] that will be our Task GUI package. In the folder create an empty file
__init__.py and a file named hello.py.

yakka
 ├──────── __init__.py
 └──────── hello.py

The hello.py file shall contain the following code:

from gui_executor.exec import exec_ui

@exec_ui(immediate_run=True) ①
def hello_world():
 print("Hello, World!")

① Each task button in the Task GUI is actually a function that is decorated with the @exec_ui
decorator.

Make sure you are at the same directory level as the yakka folder and the execute the following
command from your terminal. That will start the Task GUI as shown in the screenshot below.

PYTHONPATH=. gui-executor --module-path yakka

We see the task appearing in the screenshot above. The task text is blue which means it will run
immediately when clicked. The tasks name is the name of the function and the task group name is the
name of the .py file. The icon is the standard icon used for the task buttons. When you click the task

PLATO-KUL-PL-MAN-0003 KU Leuven

22.2. Defining a Task | 105

button, the Console shows the following output:

----- Running script 'hello_world' in kernel ①
The code snippet:
 ──
 response = hello_world() ②
 ──

Hello, World! ③
----- function 'hello_world' execution finished. ④

What do we see in this output:

① The script is run in the kernel, that is the Jupyter kernel which is started when the Task GUI starts
up. By default, the 'python3' kernel is used as you can see in the toolbar.

② The code snippet that is run is shown between two horizontal lines. We see that the function is
called without arguments and the return is catched in the variable response (which is None since
the function doesn’t return anything).

③ The string 'Hello, World!' is printed when the function was executed.

④ A mark that the function execution has finished.

Let’s add another task that takes an argument 'name' as a string with the default value of "John".

from gui_executor.exec import exec_ui

UI_MODULE_DISPLAY_NAME = "Hello Tasks" ①

@exec_ui(immediate_run=True)
def hello_world():
 print("Hello, World!")

@exec_ui(display_name="Hello...") ②
def hello_you(name: str = "John"): ③
 print(f"Hello, {name}!")

1. if the global variable UI_MODULE_DISPLAY_NAME is defined, its value will be used as the name of the
group of buttons in this module.

2. You can give the task button a proper name instead of the function name.

3. The type hint for the argument and the default value are used in the arguments panel in the GUI.

KU Leuven PLATO-KUL-PL-MAN-0003

106 | 22. The Tasks GUI

In the screenshot above, you can see the effect of the small changes we made in the hello.py. The
tasks button group is now called 'Hello Tasks' and the new task we added got the 'Hello…' name
instead of the function name. The new task icon has a different color because it’s is selected. You can
also see in the arguments panel that the type hint is picked up and shown in grey and the default
name is also filled in grey in the text field. When I put my name there and press the 'Run' button, you
can see that the function is called with the proper argument.

22.3. The @exec_ui decorator
TBW

• immediate_run

• description

• display_name

• use_kernel, use_gui_app, use_script_app

• input_request

• icons

22.4. Type Hints and Defaults
TBW

• supported type hints

• defining a new type hint

• ListList

• Callback

PLATO-KUL-PL-MAN-0003 KU Leuven

22.3. The @exec_ui decorator | 107

22.5. Choosing your icons
TBW

• PNG or SVG

• normal and selected

• what when immediate_run=True

22.6. The Jupyter Kernels
TBW

• Switching kernels and why

• creating a new kernel

22.7. Running your tasks
TBW

• Running in the kernel

• Running as a script

• Running as a GUI App

22.8. The __init__.py
TBW

• creating a function to start the GUI in the background

• add the command to the setup.py

[1] 'yakka' means 'work' in informal Australian English

KU Leuven PLATO-KUL-PL-MAN-0003

108 | 22. The Tasks GUI

Part VII — Unit Testing and beyond

PLATO-KUL-PL-MAN-0003 KU Leuven

| 109

23. The Test Suite
• pytest

KU Leuven PLATO-KUL-PL-MAN-0003

110 | 23. The Test Suite

24. Testing device Interfaces
The first step in the development of a device driver is to implement the direct interface to the device,
e.g. the Ethernet or USB interface. In parallel to this step start implementing the simulator

There are several ways to test device interfaces since we have layered access to the devices. The direct
access to a device is usually implemented in a <device_name>_devif.py module. If the device has an
Ethernet connection, the class is usually called <device_name>EthernetInterface, e.g.
OGSEEthernetInterface, for USB connected devices this would be <device_name>USBInterface, e.g.
PM100AUSBInterface`.

When you have direct access to the device and it is not used in an operational environment, you can
test the interface from the Controller class by directly instantiating this class and communicate with
the device. If the device is used in an operation environment, you will benefit a lot if you have a
simple simulator.

XXXXX - write a section on how to develop a simple instrument simulator. Take as an example OGSE
and …

PLATO-KUL-PL-MAN-0003 KU Leuven

24. Testing device Interfaces | 111

25. Code Reviews

This section is not finished and needs further updates. Please send me any comments
and suggestions for improvement. Thanks, Rik.

This is a proposal for a software source code review for the Common-EGSE. Code review is in
principle a continuing process. With every pull request in GitHub there should be one of your
colleagues doing a quick review of your changes before they are accepted and merged. We will add a
section in Contributing to the Code > Pull Requests explaining how to review the code changes from a
pull request.

This section handles a slightly more formal code review that is required at certain milestones in the
development process.

We will have a code review at TBD week.

The code review is done primarily for the following reasons:

• Share knowledge: you write code for yourself, your colleagues, test operators, scientists and
engineers. Each of them should have a certain understanding of the system, but not all at the same
detail.

• Maintainability: code should be understandable and at least two developers should know what the
code does and why. These two developers are you and one of your colleagues.

• Finding bugs and design flaws.

• Consistent error and exception handling.

• Consistent logging.

• Finding functionality creep.

• Proper testing: test coverage, functionality testing.

• Development Principles: SOLID, DRY.

• Meet coding standards.

Please remember that the purpose of the code review is not to reject the code, but to improve the
code quality. Focus is on how easy it is to understand the code.

25.1. Who is part of this Code Review?
Developers: Rik Huygen, Sara Regibo, …

Instrument Experts: Pierre Royer, Bart Vandenbussche

Do we need more reviewers? The EGSE engineers from INTA and SRON? Somebody from the PCOT?

KU Leuven PLATO-KUL-PL-MAN-0003

112 | 25. Code Reviews

../contributing-code/pull-requests.md

25.2. Planning
For each reviewer I will prepare an issue where you can check off the parts which have been
reviewed. WHERE TO PUT THE REVIEW REPORTS/COMMENTS?

It is very important that the review is done in a timely fashion. We don’t want to be bothered with this
for weeks.

Proposal for reviewer/review items:

Sara Regibo:

☐ Commanding Concept

Nicolas Beraud:

☐ Hexapod package

☐ Stages package

Rik Huygen:

☐ Image Viewer

☐ Powermeter

☐ Shutter

Pierre Royer:

☐ GlobalState

☐ Setup

Bart Vandenbussche:

☐ Image Viewer functionality

25.3. What needs to be reviewed?
TODO: Make a checklist!

• documentation:

◦ API documentation at GitHub.io

• docstrings: Do you understand from the docstring of the functions and public methods what the
functionality is, what is needed as input and what is returned, if we need to catch exceptions?

• coding style: Do I understand what the code does, is the control flow not too complicated, …

• whatch-outs:

◦ mutable default parameters

Be constructive!

PLATO-KUL-PL-MAN-0003 KU Leuven

25.2. Planning | 113

https://ivs-kuleuven.github.io/plato-common-egse/api/egse/

Be specific!

The goal is to ship good and maintainable code, it’s not the goal to prove how good or clever we are.

25.4. Prerequisites
Before the code review, all the code will be run through a number of automated steps:

• check for trailing white space;

• check for end of file blank lines;

• check format of the YAML files;

• run the code through black to make sure we have a consistent formatting;

• run the code through flake8 to make sure the style guide is being followed;

• run all the test harnesses, preferably with hardware attached, but also with the simulators. Have
the test coverage report ready.

There will be a specific release for the code review with tag code-review-2020-Q2.

KU Leuven PLATO-KUL-PL-MAN-0003

114 | 25. Code Reviews

https://black.readthedocs.io/en/stable/
https://flake8.pycqa.org/en/latest/

Part VIII — Miscellaneous
Everything in this part of the manual needs to be worked on and relocated in one of the above
parts/sections.

PLATO-KUL-PL-MAN-0003 KU Leuven

| 115

26. Set up your development environment
This section guides you through the installation of the Common-EGSE, test scripts, and configuration
files on your development machine. The result will be a development environment where you can
implement features and fix issues in both CGSE and TS, and be able to push these changes to your
origin[1] after which you can make a pull request to the upstream repository (i.e. the IvS-KULeuven
original).

The commands in this section have been tested on a MacBook Pro running Ventura
13.4 and using iTerm2 with a bash shell. The Python version I use is 3.8.15 managed
by pyenv. If you are using a different 'unix-like' environment and experience
problems, raise an issue on the plato-cgse-doc repository and we will try to give you
support asap.

26.1. Create a GitHub account and request access
First thing to do is make sure you have access to GitHub and have a GitHub account (personal or
professional) so we[2] can give you access to the relevant repositories. Therefore,

• create a –free-of-charge– GitHub account on https://github.com

• request access to the following GitHub repositories:

◦ for CGSE, i.e. plato-common-egse,

◦ for TS, i.e. plato-test-scripts

◦ for CONF, i.e. plato-cgse-conf

26.2. Fork the repositories on GitHub

If you don’t know what a fork is, please spend some time to learn what it means. A
good introduction can be found at GitHub documentation: fork a repo.

For those who just need a refresher image:

Make sure you have a fork of the repositories that you want to contribute to. Through this fork (which
resides on the GitHub server) you will create pull requests. If you do not contribute to any code, you
don’t need a fork and can clone the IvS-KULeuven repositories directly.

You can easily create a fork from the IvS-KULeuven repositories by the button in the top-right of the
website.

KU Leuven PLATO-KUL-PL-MAN-0003

116 | 26. Set up your development environment

https://github.com/pyenv/pyenv
https://github.com/IvS-KULeuven/plato-cgse-doc
https://github.com
https://github.com/IvS-KULeuven/plato-common-egse
https://github.com/IvS-KULeuven/plato-test-scripts
https://github.com/IvS-KULeuven/plato-cgse-conf
https://docs.github.com/en/get-started/quickstart/fork-a-repo

The fork will be created in your personal GitHub account.

26.3. Clone GitHub repository
Execute the following code in a terminal. It will create a folder where all git repositories reside, then
clone your fork of the plato-common-egse. A new folder will be created for plato-common-egse.

$ mkdir -p ~/plato-git-repos
$ cd ~/plato-git-repos
$ git clone https://github.com/<username>/plato-common-egse.git ①
$ cd plato-common-egse

① replace <username> with your GitHub account user name!

You should do the same for the two other repositories, plato-test-scripts and plato-cgse-conf.
Remember that you do not need a fork if you are not going to make changes to the repository, like e.g.
for the configuration repo.

$ cd ~/plato-git-repos
$ git clone https://github.com/<username>/plato-test-scripts.git ①
$ git clone https://github.com/IvS-KULeuven/plato-cgse-conf.git ②

① replace <username> with your GitHub account user name!

② the clone is here directly from the IvS-KULeuven repo

You should now have three folders in your ~/git location:

$ ls -l
total 0
drwxr-xr-x 8 rik staff 256 Jun 14 23:01 plato-cgse-conf
drwxr-xr-x 28 rik staff 896 Jun 14 22:54 plato-common-egse
drwxr-xr-x 16 rik staff 512 Jun 14 23:01 plato-test-scripts

26.4. Set up the environment variables
Add the following lines to a file that can be sourced into your terminal session, e.g. ~/.bash_profile.
Preferably, you should use modules to maintain your environment.

export SITE_ID=KUL ①
export PATH=$PATH:~/plato-git-repos/plato-common-egse/venv/bin:~/plato-git-repos/plato-test-scripts/venv/bin
export PYTHONPATH=~/plato-git-repos/plato-test-scripts/src:~/plato-git-repos/plato-common-egse/src:~/plato-git-
repos/plato-common-egse/venv/lib/python3.8/site-packages
export PYTHONSTARTUP=~/plato-git-repos/plato-common-egse/startup.py
export PLATO_DATA_STORAGE_LOCATION=~/data/
export PLATO_CONF_DATA_LOCATION=~/plato-git-repos/plato-cgse-conf/data/${SITE_ID}/conf
export PLATO_LOG_FILE_LOCATION=~/data/${SITE_ID}/log

PLATO-KUL-PL-MAN-0003 KU Leuven

26.3. Clone GitHub repository | 117

https://lmod.readthedocs.io/en/latest/

export PLATO_LOCAL_SETTINGS=~/cgse/local_settings.yaml
export PLATO_CONF_REPO_LOCATION=~/plato-git-repos/plato-cgse-conf/

① replace KUL with your favorite site id in upper case, CSL1, CSL2, IAS, INTA, or SRON. Beware that
when you choose an unknown site id, you will have to provide all the site specific Setups, device
driver implementations in test scripts etc.

26.5. Create a Python virtual environment
Create a virtual environment for Python 3.8 (the version to be used for the CGSE and TS), then activate
the venv and update pip and setuptools packages.

$ cd ~/plato-git-repos/plato-common-egse
$ python3.8 -m venv venv --prompt venv-cgse ①
$ source venv/bin/activate
(venv-cgse) $ python -m pip install --upgrade pip setuptools wheel

① the prompt will appear in your terminal, so you will know which environment you are using.

Now install all the packages needed to run the CGSE and TS. These packages are installed from a
requirements.txt file which is currently not yet added to the repository. The file can be downloaded
from XXXXX.

(venv-cgse) $ python -m pip install -r requirements.txt
(venv-cgse) $ deactivate

Also for the test scripts you will need to create a virtual environment. You won’t need to install any
additional dependencies since all dependencies are installed in the CGSE virtual environment and this
location was added to the PYTHONPATH above.

$ cd ~/plato-git-repos/plato-test-scripts
$ python3.8 -m venv venv --prompt venv-ts

26.6. Install the CGSE
It’s now time to finally install the Common-EGSE as a developer installation, also called editable mode (
-e or --editable). This means the CGSE will be installed as a normal package, only the source code will
be linked to the actual checked out source tree in you project. The result is that any changes that you
make to the code in your source tree will be used in subsequent executions of scripts or in the Python
REPL[3].

$ cd ~/plato-git-repos/plato-common-egse
$ source venv/bin/activate
(venv-cgse) $ python -m pip install -e .
(venv-cgse) $ deactivate
$

and also do a developer install for plato-test-scripts:

KU Leuven PLATO-KUL-PL-MAN-0003

118 | 26. Set up your development environment

https://pip.pypa.io/en/stable/user_guide/

$ cd ~/plato-git-repos/plato-test-scripts
$ source venv/bin/activate
(venv-ts)$ python -m pip install -e .
(venv-ts) $ deactivate
$

26.7. Start the core services
From the project folder, run the invoke task start-core-egse to start up the five core services.

$ cd ~/plato-git-repos/plato-common-egse
$ invoke start-core-egse

You should now be able to see the core services running on your system:

$ ps -ef|grep _cs
459800007 15196 1 0 11:48AM ttys003 0:00.56 /Users/rik/git/plato-common-egse/venv/bin/python3.8
/Users/rik/git/plato-common-egse/venv/bin/log_cs start
459800007 15197 1 0 11:48AM ttys003 0:09.79 /Users/rik/git/plato-common-egse/venv/bin/python3.8
/Users/rik/git/plato-common-egse/venv/bin/sm_cs start
459800007 15208 1 0 11:48AM ttys003 0:14.22 /Users/rik/git/plato-common-egse/venv/bin/python3.8
/Users/rik/git/plato-common-egse/venv/bin/cm_cs start
459800007 15359 1 0 11:49AM ttys003 0:08.78 /Users/rik/git/plato-common-egse/venv/bin/python3.8
/Users/rik/git/plato-common-egse/venv/bin/pm_cs start
459800007 15370 1 0 11:49AM ttys003 0:07.35 /Users/rik/git/plato-common-egse/venv/bin/python3.8
/Users/rik/git/plato-common-egse/venv/bin/syn_cs start

The first time you start the core services after installation, the pm_cs and syn_cs will
not start because you have not loaded a valid Setup in the configuration manager.
Do that from the terminal as follows (replace 45 with a valid Setup ID):

$ cm_cs load-setup 45

Then start the core services again with the invoke command.

Now you can also start the process manager GUI with the following command:

$ pm_ui

If you get the following error of too many open files, increase the limit of open files with ulimit -n
4096 and restart the process manager GUI.

Too many open files (src/kqueue.cpp:62)
Abort trap: 6

The process manager GUI should now start and show something like the screenshot below depending
on the site id you have defined and the Setup ID you have loaded.

PLATO-KUL-PL-MAN-0003 KU Leuven

26.7. Start the core services | 119

If you try to start the Operator GUI from the toolbar, note that this will only work
after you have also installed the test scripts.

26.8. Updating the CGSE and TS

Prepare for updates (only once)

The update_cgse and update_ts scripts use a remote named updates to fetch new updates from
the IvS-KULeuven repository. Therefore add this remote for both repos:

$ cd ~/plato-git-repos/plato-common-egse
$ git remote add updates https://github.com/IvS-KULeuven/plato-common-egse.git
$ cd ~/plato-git-repos/plato-test-scripts

KU Leuven PLATO-KUL-PL-MAN-0003

120 | 26. Set up your development environment

$ git remote add updates https://github.com/IvS-KULeuven/plato-test-scripts.git

It’s important that you keep your local repo up-to-date with the upstream repositories. We have two
commands defined for this, update_cgse and update_ts. There are however a few guidelines (or rules)
that you have to adhere to in order to keep a clean development environment.

1. use branches! For each fix or feature that you are working on, create a separate branch off the
develop branch. The git branches are very fast, so that is a cheap operation and it keeps your
develop branch clean.

2. an update shall be done in the develop branch, so make sure you are on the develop branch and
not in one of your feature or fix branches.

3. if you have uncommitted changes, you will not be able to update the develop branch or ven switch
branches. To solve this, either commit the changes in the branch you are working before switching
to develop. In the develop branch, there should be no changes as they should all be in the
feature/fix branches. If, for some reason, there has been a change that you do not want to loose,
stash these changes before starting the update and put them back afterwards.

$ cd ~/plato-git-repos/plato-common-egse
$ git checkout develop
$ (git stash)
$ update_cgse develop
$ (git stash pop)

$ cd ~/plato-git-repos/plato-test-scripts
$ git checkout develop
$ (git stash)
$ update_ts
$ (git stash pop)

You can request the version of the CGSE and TS as follows [for an explanation on version numbers,
see Chapter 2]:

$ python -m egse.version
CGSE version in Settings: 2023.24.0+CGSE ①
CGSE git version = 2023.24.0+CGSE-0-ga54e786b
CGSE installed version = 2023.24.0+cgse
$ python -m camtest.version
CAMTEST version in Settings: 2023.24.1+TS ①
CAMTEST git version = 2023.24.1+TS-0-geedbdef

① of course on your machine, by the time you will execute these lines, the versions will be different.

[1] In the context of 'git', 'origin' refers to the default name given to the remote repository from which a local repository was
cloned or with which it is associated and receives updates.

[2] Rik Huygen (rik.huygen at kuleuven.be) or Sara Regibo (sara.regibo at kuleuven.be)

[3] A REPL (Read-Eval-Print Loop) is an interactive programming environment that allows users to enter Python code, which is
then executed, and the results are immediately displayed.

PLATO-KUL-PL-MAN-0003 KU Leuven

26.8. Updating the CGSE and TS | 121

27. Terminal Commands
A lot of testing and monitoring can be done from the command terminal and doesn’t need a specific
GUI or PyCharm. This section will explain how to check status of most of the control servers, how to
inspect log files and HDF5 files, how to generate reports and how you can update the Common-EGSE
and the test scripts.

27.1. What goes into this section
• See cheatsheet CGSE → included below

• describe all _cs commands and their options, when to use them and when NOT to use them

• describe all _ui commands and their options

• what other terminal commands are used

◦ python -m egse (and all the other info modules)

◦ python ../src/scripts/check_hdf5_files.py

◦ python ../src/scripts/create_hdf5_report.py

◦ export_grafana_dashboards

◦ update_cgse → should become cgse update

◦ update_ts → should become ts update

• Textualog, see Section 5.1

27.2. Often used terminal commands

Command Description

ps -ef|egrep "_cs|das|fov|fee|fits" Check which control servers are running. The names of all
control servers end with _cs, except das, fov_hk, n_fee_hk,
and fitsgen.

kill [-9] PID Terminate the command with the given process identifier
(PID). The -9 option is used to force a kill.

kill %1 After you have sent a command to the background with ^Z,
this command must still be killed. The %1 represents the jobs
number.

df -h /data /archive Check the available disk space on the data and archive
disks. The -h option given numbers in a human readable
format.

KU Leuven PLATO-KUL-PL-MAN-0003

122 | 27. Terminal Commands

Command Description

curl localhost:<port> Most of the control servers generate metrics data that will
be ingested in a Prometheus time-series database. The
metrics can be inspected with this curl command. Run the
command on the egse-server or replace localhost with the
egse-server IP address. The port is dependent on the metrics
that you want to inspect, each control server has a specific
metrics port.

27.3. Often used git commands
The git commands need to be executed in the project folder or a sub-folder thereof, e.g. ~/git/plato-
common-egse.

Command Description

git status Check the status of the working directory. This is mainly used to
list the files that have been changed and need to be added and
committed before pushing to the repository. Sometimes these files
need to be stashed before an update.

git stash [pop] Temporarily saves (stashes) the files that were changed in your
working directory. Use this command to clear your working
directory before updating the project. The pop option is used to put
back the saved files after update.

git describe --tags [--long] Print the most recent tag which represents your installed version
or release. If the --long option is used, the additional information
is the number of commits since the tag and the abbreviated
commit hash.

git remote -v Check the remote repositories that are known on your local copy.

git branch [-v] [-vv] Print the branches known on your local repo. The current branch
has an asterisk '*' in front of its name. The -v option adds
information on the last commit, when doubling this option, -vv,
also the remote tracking branch will be printed.

git fetch updates Fetch all changes from the remote updates

git rebase updates/develop Apply the changes from updates/develop on the current branch.
This is equivalent to merging.

PLATO-KUL-PL-MAN-0003 KU Leuven

27.3. Often used git commands | 123

CGSE

CHEAT SHEET for CGSE ISSUE 0.2 — APRIL 2021 Page | 1

CHECKING
Python version — 3.8+

Python virtual environment venv

Environment variables

 PATH /cgse/bin:$PATH

 PYTHONPATH /cgse/lib/python

 PLATO_LOCAL_SETTINGS /cgse/local_settings.yaml

 PLATO_DATA_STORAGE_LOCATION /data/{SITE}

 PLATO_CONF_DATA_LOCATION /data/{SITE}/conf

 PLATO_LOG_FILE_LOCATION /data/{SITE}/log

CORE SERVICES
Running the core services invoke status-core-egse
 invoke start-core-egse
 invoke stop-core-egse

Configuration Manager cm_cs status
Storage Manager sm_cs status
Process Manager pm_cs status
Log Manager log_cs status

CONFIGURATION
Check the settings python -m egse.settings [--local]

SITE ID edit $PLATO_LOCAL_SETTINGS

List the available Setups cm_cs list-setups

OS info python -m egse.system

SETUP
Check the current Setup python -m egse.setup [--use-cm]

List the available Setups cm_cs list-setups
Load a Setup cm_cs load-setup <setup_id>

GUIs
CORE SERVICES

Configuration Manager GUI cm_ui
Process Manager GUI pm_ui
Setup GUI setup_ui

DEVICE GUIs

* Option to select device type --type proxy|simulator|direct

AEU Test EGSE aeu_ui

TCS EGSE tcs_ui

PUNA Hexapod* puna_ui

ZONDA Hexapod* zonda_ui
HUBER Stages* smc9300_ui
Filter Wheel 8SMC4* fw8smc4_ui
Shutter KSC101* ksc101_ui
Power Meter PM100A* pm100a_ui
LakeShore Model 336* lsci336_ui

OTHER GUIs

HDF5 GUI (N-FEE) hdf5_ui [{filename}]
Source Position GUI fpa_ui
Visited Positions GUI vis_pos_ui

DEVICE CONTROL
Start control servers in simulator mode --simulator

AEU Test EGSE aeu_cs start|stop
TCS EGSE tcs_cs start|stop
PUNA Hexapod puna_cs start|stop

ZONDA Hexapod zonda_cs start|stop
HUBER Stages smc9300_cs start|stop

use only when working isolated on your local machine

Common-EGSE

Most commands have a ——help option.

{var} means to change this block with the value of var.

UPDATE
Use the following commands from the Project folder

DEVELOPMENT MODE

Pull changes from upstream git pull upstream develop
Install python setup.py clean --all

 python setup.py develop

OPERATIONAL MODE

(e.g. release-tag: 2024.3)

Pull changes from upstream git fetch upstream
 git checkout tags/{release_tag} -b {release_tag}−branch

Install python setup.py clean --all
 python setup.py install --home=/cgse

28. Stories
This section contains short stories of debugging sessions and working with the system that are
otherwise difficult to explain in the previous sections.

28.1. Seemingly unrelated Process Manager Crash
Related to issue: no issue

The filter wheel control server (fw8smc4_cs) didn’t start when using the process manager GUI (pm_ui).
When the button was clicked nothing happened, but we got some error messages in the logger:

There was no clear error message except that the PM was already registered at the storage manager.
We thought that could be due to the fact the pm_ui crashed already several times before, or maybe a
STORAGE_MNEMONIC in the Settings that was not set correctly. So we checked the Settings YAML file,
and also the local settings file. The command to do that is:

python -m egse.settings

We looked at the Setups and inspected the source of the filter wheel control server, but could not
relate the problem to anything in the code. Especially, since the control server could be started
without problem from the terminal.

fw8smc4_cs start

PLATO-KUL-PL-MAN-0003 KU Leuven

28.1. Seemingly unrelated Process Manager Crash | 125

So we started to look into all kinds of settings that were important when starting a control server from
the process manager, e.g. the DEVICE_SETTINGS variable that is expected in the module and should
contain the definition of the ControlServer. XXXXX: xref to document/section explaining this. We fixed
a number of these things, see for example PR #1963, but still the problem remained.

We were still confused about the message that the PM was already registered at the Storage Manager.
Why does this appear here? Why would the process manager try to register again. Looking at the
debug messages before the error, we saw that the process manager actually restarted. That’s of course
the reason why it tries to register to the Storage, and the fact that it is already registered is probably
due to the fact that the process manager crashed. So, instructing the pm_cs to start the fw8smc4_cs (by
clicking the button in the pm_ui) crashes the process manager. And it is of course immediately
restarted by the Systemd services.

So, we checked the logging messages of the Systemd for the pm_cs.services:

May 24 14:46:35 plato-arrakis pm_cs[2526576]: libximc.so: cannot open shared object file: No such file or directory
May 24 14:46:35 plato-arrakis pm_cs[2526576]: Can't load libximc library. Please add all shared libraries to the
appropriate places. It is decribed in detail in developers' documentation. On Linux make sure you installed libximc-
dev package.
May 24 14:46:35 plato-arrakis pm_cs[2526576]: make sure that the architecture of the system and the interpreter is
the same
May 24 14:46:35 plato-arrakis pm_cs[2526576]: System Exit with code None.

The problem seems to be that the pm_cs can not load the libximc shared library which is needed for the
filter wheel control server. This works in the terminal, because there the LD_LIBRARY_PATH is set, but it
is not known to the process manager control server. To fix this, the environment variable must be set
in the /cgse/env.txt file that is used in the services file to start the pm_cs.services. The content of the
files:

PYTHONPATH PLATO_CONF_DATA_LOCATION PLATO_CONF_REPO_LOCATION
PLATO_DATA_STORAGE_LOCATION PLATO_LOG_FILE_LOCATION LD_LIBRARY_PATH

[plato-data@plato-arrakis ~]$ cat /cgse/env.txt
PYTHONPATH=/cgse/lib/python/
PLATO_LOCAL_SETTINGS=/cgse/local_settings.yaml
PLATO_CONF_DATA_LOCATION=/data/IAS/conf
PLATO_CONF_REPO_LOCATION=/home/plato-data/git/plato-cgse-conf
PLATO_DATA_STORAGE_LOCATION=/data/IAS
PLATO_LOG_FILE_LOCATION=/data/IAS/log
LD_LIBRARY_PATH=/home/plato-data/git/plato-common-egse/src/egse/lib/ximc/libximc.framework

and

[plato-data@plato-arrakis ~]$ cat /etc/systemd/system/pm_cs.service
[Unit]
Description=Process Manager Control Server
After=network-online.target cm_cs.service

[Service]
Type=simple
Restart=always
RestartSec=3
User=plato-data
Group=plato-data

KU Leuven PLATO-KUL-PL-MAN-0003

126 | 28. Stories

EnvironmentFile=/cgse/env.txt
WorkingDirectory=/home/plato-data/workdir
ExecStartPre=/bin/sleep 3
ExecStart=/cgse/bin/pm_cs start

[Install]
Alias=pm_cs.service
WantedBy=multi-user.target

After this fix, the fw8smc4_cs could be started from the process manager GUI.

28.2. A non-closed socket is deeply buried in the code
So, I let myself work on a side track today and yesterday. I was doing some monitoring tests with the
dummy control server and noticed that the Dummy CS would not properly terminate. It was hanging
and it was not clear why.

I went through the whole chain of calls to close() functions on all sockets to find out if there was one
still missing and if maybe I should use the linger=0 option etc. I placed log messages before and after
all these actions, used different methods to stop and start sub processes, … It took me way too long to
find out…

When I put logging statements around the term() call for the ZeroMQ context of the control server, I
noticed these message never appeared. Thinking therefore the problem I was trying to solve would
appear before these statements was again wrong. The reason they did not appear was that I close
down all ZeroMQ logging handlers before I terminate the context, the logging level for the standard
logger was set to INFO instead of DEBUG.

close_all_zmq_handlers()

logging.debug("Terminating the ZeroMQ Context.")
self.zcontext.term()
logging.debug("-bye-")

So, I will have to use logging.info there instead.

Since the control server was hanging when terminating the ZeroMQ context, checking if some port
number was still open sounded like a good idea. I found that a connection to the configuration
manager commanding port (6000) was still open for the dummy_cs process (PID 36619 at that time):

$ lsof -i -P -n |grep 36619
python3.8 36619 rik 27u IPv4 0x283fbd58b2f1ab9d 0t0 TCP 127.0.0.1:58869-
>127.0.0.1:6000 (ESTABLISHED)

So, somewhere there must be a connection to the configuration control server that was not closed
properly. I started searching the code and finally came to this piece of art (ὤ�) in the control.py module.

endpoint = proxy().get_endpoint()
if not is_control_server_active(endpoint, timeout=0.5):
 MODULE_LOGGER.warning(f"The {endpoint} endpoint is not responding, {listener['name']} not un-registered.")

PLATO-KUL-PL-MAN-0003 KU Leuven

28.2. A non-closed socket is deeply buried in the code | 127

 return

This is in the unregister_as_listener() method of the ControlServer class and the idea behind this
code was to quickly check if the CM CS was active before sending a command to it that takes more
time (because we use 5 retries). Turns out to be a bad idea for several reasons.

1. We want to use the is_control_server_active() function, but this needs the endpoint for the CS to
contact,

2. we don’t have the endpoint, but we can fetch it from the CS using the Proxy (!), so we used the
Proxy to get the endpoint,

3. then we check if the CS is active, basically opening another Proxy and doing a ping(), when its not
active, we return otherwise we proceed.

4. In both cases we forget to close/disconnect the Proxy (!)

When possible, you should always use the Proxy as a context manager, the socket
will then automatically be closed when leaving the context!

So, why not directly using the Proxy with a short timeout. The Proxy does a ping() when entering the
context. So, I came up with this snippet for now:

try:
 with proxy(timeout=100) as x:
 pass
except ConnectionError as exc:
 MODULE_LOGGER.warning(
 f"The {proxy.__class__.__name__} endpoint is not responding, {listener['name']} not un-registered.")
 return

Now, the next question is if we do need this at all. In the register_as_listener() method, we don’t first
check if the control server is active, so why did I think it is necessary here? There are some comments
in the code that try to clarify this, but I will spill the beans, the unregister… method is usually called
when shutting down the services and it might be that the configuration manager is already shut down
at the time we want to unregister.

This solution has a drawback. Not all subclasses of Proxy allow to pass the timeout
during construction, so when the proxy variable contains a sub-class that doesn’t
have a timeout argument, as NameError will be raised.

NameError: name 'timeout' is not defined

Actually, most of the Proxy subclasses do not have the timeout parameter, so we will
leave that out.

KU Leuven PLATO-KUL-PL-MAN-0003

128 | 28. Stories

29. Miscellaneous

Below this point we have miscellaneous topics that still need their place in the
developer manual.

This file contains sections that are not assigned a proper location in the developer document. When
we are ready for one of the sections, just move it out into its dedicated file.

Sections below are copied from the Word document PLATO-KUL-PL-MAN-0003.

PLATO-KUL-PL-MAN-0003 KU Leuven

29. Miscellaneous | 129

30. System Configuration
• Which files to edit for configuring the system?

◦ egse/settings.yaml do not edit this, instead edit the local_settings file pointed to by
PLATO_LOCAL_SETTINGS environment variable.

• Where do I describe which components are part of the system?

• What if CSL has two Keithley DAQ6510 devices? How will they be distinguished?

30.1. System Components
This section describes the main components of the Common-EGSE system.

• Storage Manager

• Configuration Manager

• Process Manager

• Device Control Servers

• System Under Test (SUT)

30.2. Data Flows
The Common-EGSE provides functionality to configure, control and/or readout the following devices:

• Camera N-FEE and F-FEE, i.e. configure the camera and readout the CCDs

• CAM TCS EGSE, i.e. thermal control of the TOU and FEE

• AEU EGSE, i.e. provide secondary power and synchronisation to the FEE

• Optical, e.g. control and attenuate laser light source

• Mechanisms, e.g. hexapod, translation and rotation stages, gimbal

• Thermal control or monitoring of test setup

All data that is output by any of these devices will be archived in global and/or test specific files. The
file types and formats are described in section Error! Reference source not found. Error! Reference
source not found..

KU Leuven PLATO-KUL-PL-MAN-0003

130 | 30. System Configuration

Figure 1. The main components of the Common-EGSE (bleu) and how they interface to each other
(internal interfaces) and to the test setup (grey) and the PLATO camera (SUT) (external interfaces).

The Common-EGSE consists of several components, each with specific responsibilities, that
communicate over a ZeroMQ network protocol. The following components have been identified and
are part of the core functionality of the Common-EGSE:

• Test Control: execution of test and commanding scripts

• Configuration Manager: control the systems configuration

• DPU Simulator: configuration of the FEE and readout of the CCD and housekeeping data

• Logging: central logging component for status information and events

• Monitoring: monitor crucial housekeeping and telemetry and perform limit checks

• Storage: archive all data like images, housekeeping, telemetry, SpaceWire packets, commanding
sequences etc.

Figure 1 above summarises the main components in the core Common-EGSE and test setup and
defines their connections.

PLATO-KUL-PL-MAN-0003 KU Leuven

30.2. Data Flows | 131

31. Installation and Update
The Common-EGSE software system is installed and updated via GitHub. The installation is more
complex than a simple download-and-install procedure and is fully described in its installation guide
[RD-01].

KU Leuven PLATO-KUL-PL-MAN-0003

132 | 31. Installation and Update

32. Getting Started
If you work with the system for the first time, you should go through the user manual [RD-02] to get
familiar with the Common-EGSE setup, services and interactions. This section will explain how to log
onto the Common-EGSE and how to prepare your development environment.

32.1. Log on to the System
• Who does login to the system?

• How, as which user, privileges is the user logged in?

• What services are running anyway, started at system boot?

• Developer Desktop versus operational desktop

32.2. Setting up the development environment
• Git

• Fork and clone the GitHub repository

• Install the Common-EGSE system – see the installation guide [RD-01]

• PYTHONPATH

• Being in the right directory

• PyCharm or another IDE

PLATO-KUL-PL-MAN-0003 KU Leuven

32.1. Log on to the System | 133

Index
A

assert, 24

B

building block, 99

C

Controller, 40
core services, 29

D

data propagation, 67

E

EAFP, 21
Error, 24
Exception, 19

defining your own, 23
error code, 21

G

generate_command_sequence, 99
GlobalState, 64

L

LBYL, 21
LD_LIBRARY_PATH, 126

O

observation, 99

P

PLATO_CONF_DATA_LOCATION, 126
PLATO_CONF_FILE_LOCATION, 12
PLATO_CONF_REPO_LOCATION, 126
PLATO_DATA_STORAGE_LOCATION, 126
PLATO_LOCAL_SETTINGS, 126, 130
PLATO_LOG_FILE_LOCATION, 126
Protocol, 40
Proxy, 40
PYTHONPATH, 126

R

raise, 22

S

Setup, 12, 64
submit, 12

T

try..except, 19

W

with, 20

KU Leuven PLATO-KUL-PL-MAN-0003

134 | Index

	Common–EGSE : Developer Manual
	Table of Contents
	Changelog
	Colophon
	Conventions used in this Book
	Contributors
	Preface
	Introduction
	Documents and Acronyms
	Applicable documents
	Reference Documents
	Acronyms

	Caveats
	Setup

	Part I — Development Notions
	1. Style Guide
	1.1. TL;DR
	1.2. General
	1.3. Classes
	1.4. Methods and Functions
	1.5. Variables
	1.6. CONSTANTS
	1.7. Modules and Packages
	1.8. Import Statements

	2. Version numbers
	3. Best Practices for Error and Exception Handling
	3.1. When do I catch exceptions?
	3.2. How do I catch Exceptions?
	3.3. What about the 'with' Statement?
	3.4. Why not just return an error code?
	3.5. When to Test instead of Try?
	3.6. When to re-throw an Exception?
	3.7. What about Performance?
	3.8. Can I raise my own Exception?
	3.9. When should I use Assertions?
	3.10. What are Errors?
	3.11. Cascading Exceptions
	3.12. Logging Exceptions
	3.13. Resources

	4. Writing docstrings
	4.1. What needs to go into the docstring and what not?
	4.2. Where will the docstring show up?

	Part II — Core Concepts
	5. Core Services
	5.1. The Log Manager
	5.2. The Configuration Manager
	5.3. The Storage Manager
	5.4. The Data Dumper
	5.5. The Process Manager
	5.6. The Synoptics Manager
	5.7. The Telemetry (TM) Dictionary

	6. The Commanding Concept
	6.1. The Control Server
	6.2. The Proxy Class
	6.3. The Protocol Class
	6.4. Services
	6.5. Response, Failure, Success
	6.6. Dynamic Commanding

	7. Notifications for Control Servers
	7.1. The Event
	7.2. The Listener
	7.3. The Event Generator
	7.4. The Service Protocol
	7.5. Scheduled Tasks
	7.6. The Notification Process
	7.7. The Configuration Manager
	7.8. The Storage Manager
	7.9. The Dummy Control Server
	7.10. Adding event handling to a control server

	8. The Setup
	8.1. What is the Setup?
	8.2. What goes into the Setup?
	8.3. How to use the Setup
	8.4. How to create and manage Setups

	9. The Settings Class
	10. The GlobalState
	10.1. Singleton versus Shared State
	10.2. What is in the GlobalState?

	11. Data Strategy
	12. Date, Time and Timestamps
	12.1. Formatting the date and time

	Part III — Device Commanding
	13. Device Control Servers
	13.1. The Device Interface Classes

	14. The System Under Test (SUT)
	14.1. DPU Control Server and DPU Processor
	14.2. The N-FEE Simulator
	14.3. CCD Numbering
	14.4. The F-FEE Simulator

	15. SpaceWire
	15.1. The SpaceWire Lab Interface – Hardware
	15.2. The SpaceWire Interface class – Software
	15.3. Testing your connection
	15.4. The RMAP Protocol
	15.5. A more elaborate example

	16. Device Simulators
	16.1. The OGSE Simulator

	Part IV — Essential Toolkit and Infrastructure Elements
	17. Essential Toolkit
	17.1. The NavigableDict class
	17.2. The SubProcess class
	17.3. The ProcessStatus class
	17.4. The RegisterMap

	18. Infrastructure Elements
	18.1. Bits, Bytes and Hex
	18.2. Reloading functions and modules
	18.3. Time and Timing
	18.4. Resources

	Part V — Monitoring
	19. Metrics, Prometheus and Grafana
	19.1. Setup Prometheus
	19.2. Define your metrics

	Part VI — Test Scripts
	20. Observations
	21. Building Blocks
	22. The Tasks GUI
	22.1. The package Layout
	22.2. Defining a Task
	22.3. The @exec_ui decorator
	22.4. Type Hints and Defaults
	22.5. Choosing your icons
	22.6. The Jupyter Kernels
	22.7. Running your tasks
	22.8. The __init__.py

	Part VII — Unit Testing and beyond
	23. The Test Suite
	24. Testing device Interfaces
	25. Code Reviews
	25.1. Who is part of this Code Review?
	25.2. Planning
	25.3. What needs to be reviewed?
	25.4. Prerequisites

	Part VIII — Miscellaneous
	26. Set up your development environment
	26.1. Create a GitHub account and request access
	26.2. Fork the repositories on GitHub
	26.3. Clone GitHub repository
	26.4. Set up the environment variables
	26.5. Create a Python virtual environment
	26.6. Install the CGSE
	26.7. Start the core services
	26.8. Updating the CGSE and TS

	27. Terminal Commands
	27.1. What goes into this section
	27.2. Often used terminal commands
	27.3. Often used git commands

	28. Stories
	28.1. Seemingly unrelated Process Manager Crash
	28.2. A non-closed socket is deeply buried in the code

	29. Miscellaneous
	30. System Configuration
	30.1. System Components
	30.2. Data Flows

	31. Installation and Update
	32. Getting Started
	32.1. Log on to the System
	32.2. Setting up the development environment

	Index

