
Ground Tests Commanding Manual
KU Leuven PLATO Team

Version 0.13, 29/03/2024

Table of Contents
Changelog . 1

Colophon . 3

Conventions used in this Book . 4

Purpose . 6

Documents and Acronyms . 7

Applicable documents . 7

Reference Documents . 7

Acronyms . 7

1. Introduction . 10

1.1. Contents. 10

1.2. EGSE commanding software environment. 10

1.3. How different user profiles use the software. 10

2. Software Overview . 12

2.1. The plato-common-egse GitHub repository . 12

2.2. The plato-test-scripts GitHub repository . 12

2.3. The plato-cgse-conf GitHub repo . 13

2.4. Software installation . 13

2.5. Naming Convention . 13

3. Test script architecture . 15

3.1. Overview . 15

3.2. Building block . 16

4. Test execution . 19

4.1. Test execution: execute . 19

4.2. Preview the command sequence. 19

4.3. Executing short building blocks individually. 20

5. Data acquisition and storage . 21

5.1. Housekeeping telemetry . 21

5.2. Observation . 22

5.3. Image data . 24

5.4. Telecommand history . 35

6. Configuration and Setups . 37

6.1. Example Setup file . 37

6.2. Available Setups . 39

6.3. Loading a Setup . 40

6.4. Inspecting, accessing, and modifying a Setup . 41

6.5. Saving a new setup . 43

7. Common-EGSE startup, shutdown, sleep . 44

7.1. EGSE States . 44

7.2. Core & Device Processes . 44

7.3. Process Manager GUI . 45

8. Utility functions . 49

8.1. Logging . 49

8.2. Handling Errors. 49

8.3. Coordinate transformations . 49

9. When a new camera arrives . 53

9.1. Setup. 53

9.2. Purpose . 53

9.3. Useful Information . 54

9.4. A new camera arrives at CSL . 54

9.5. A new camera arrives at the test houses . 63

9.6. Additional preparation steps . 63

9.7. Reference Information. 64

10. Switching ON/OFF the Camera . 66

10.1. Detailed description of Camera Switch ON. 66

10.2. Detailed description of Camera Switch OFF . 70

10.3. Analysis of the Short Function Test (SFT) . 70

11. Operating the AEU EGSE . 75

11.1. Introduction . 75

11.2. AEU switch on and off . 77

11.3. Changing between AEU EGSE operation modes . 77

11.4. Power supply Unit: Setting and checking Current and voltage protections 79

11.5. FEE voltages and currents . 79

11.6. FEE voltage memories . 80

11.7. AEU powering up and down FEE . 80

11.8. AEU configuring synchronisation signals . 80

11.9. AEU self test . 81

11.10. AEU Telemetry parameters . 82

11.11. Functional summary . 82

12. Operating the N-FEE. 84

12.1. Glossary. 84

12.2. N-FEE operating modes . 84

12.3. Cycle, Timing and Synchronisation . 86

12.4. Commanding the N-FEEs. 87

12.5. Synchronization with CCD-readouts . 93

13. Operating the F-FEE . 94

13.1. Glossary. 94

13.2. F-FEE operating modes . 94

13.3. Cycle, Timing and Synchronisation . 95

13.4. Commanding the F-FEEs . 96

13.5. Synchronization with CCD-readouts . 101

14. Operating the TCS EGSE . 102

14.1. Switching between operating modes . 102

14.2. Remote Commanding. 103

14.3. The TCS Data Acquisition System —DAS . 106

14.4. Setting the temperature setpoints. 106

14.5. Enabling / disabling temperature control. 106

14.6. Temperature sensor configuration. 106

14.7. Changing temperature sensor calibration curves . 106

14.8. Changing PI control parameters . 106

14.9. Changing the PWM frequency. 106

15. Operating the TEB, shroud and MARI thermal control . 107

15.1. Context . 107

15.2. Checking and setting the temperature setpoints. 108

15.3. Starting / stopping the temperature control loop . 109

16. Operating the OGSE . 110

16.1. Switching entire OGSE on . 110

16.2. Switching entire OGSE off. 110

16.3. Attenuation with Neutral density filters . 111

16.4. Attenuation specifying the full well fraction . 112

16.5. Switching on/off light intensity stabilisation loop . 112

16.6. Power meter. 113

16.7. OGSE housekeeping parameters . 113

17. Operating the tests, system states . 114

18. Appendices . 116

Appendix A: Examples of CCD acquisition timing sequence . 116

Appendix B: Field of view representation with visited positions in CSL . 117

Appendix C: What should be started where? . 119

Appendix D: Generating FITS files off-line. 120

Appendix E: GitHub issues, NCR, and PVS . 120

Changelog
29/03/2024 — 0.13

• Added proper figures for the F-CAM CCD and AEB numbering, see Section 13.4.1.

18/03/2024 — 0.12

• Added a section on F-FEE operation (by Pierre Royer), see Chapter 13.

12/02/2024 — 0.11

• Added a warning that loading/submitting a Setup doesn’t propagate this new Setup to all
components in the system, see Chapter 6

29/06/2023 — 0.10

• Added table with N-FEE modes and their register values for PFM, see Table 3

28/06/2023 — 0.9

• Added an appendix to explain the difference between GitHub issues, NCRs and PVS, see
Appendix 18.E

• Added a section on actions on the Setup when a new camera arrives, see Chapter 9. (This is
taken from a technical note by Pierre PLATO-KUL-PL-TN-0022)

• updated CCD layout images in a TAB for EM and FM, see Chapter 12.

• Added section on SFT analysis to section on Camera Switch ON, see Chapter 10.

• minor editorial changes like fixing links, typos, minor rewording, etc.

20/06/2023 — v0.8

• Added explanation about Camera Switch ON / OFF, see Chapter 10

19/06/2023 — v0.7

• bringing the commanding manual up-to-date with the current implementation of the Common-
EGSE, the test scripts and the situation in the test houses.

◦ Section on the plato-test-prep repository has been removed (was Section 3.3)

◦ Data Acquisition: updates in all sections

◦ Configuration and Setups: updates in all sections

◦ Common-EGSE startup, shutdown and sleep: updates in all sections

◦ Utility functions: updates in all sections

◦ Operating the N-FEE: updates in all sections

◦ Operating the TCS EGSE: only editorial updates

◦ Operating the OGSE: updates in all sections

◦ Operating the tests, system states: only editorial changes

◦ Appendix A: removed unimplemented ALT mode for ccd_side and updated other
commands with correct parameters

◦ Appendix B: updated commands for visited positions

• added a backlink to the CGSE Documentation web site for your convenience. It’s at the top of

PLATO-KUL-PL-MAN-0004 KU Leuven

Changelog | 1

the HTML page.

▼ Click to see older changelog entries

12/06/2023 — v0.6

• move the commanding manual to the CGSE documentation page and converted into
asciidoc.

• Update section on data structure

14/06/2021 — v0.5

• Update section 11.3 (rem. col_end from BB signatures)

03/05/2021 — v0.4

• Update sections 3.2, 3.3, 7.3, 7.4

• Sections 11.1 & 11.3 Change ccd_side & EF convention

• New sections 5.3, 6.3, 11.4 and 14

• Update sections 3.2, 3.3, 7.3, 7.4

• Sections 11.1 & 11.3 Change ccd_side & EF convention

• New sections 5.3, 6.3, 11.4 and 14

KU Leuven PLATO-KUL-PL-MAN-0004

2 | Changelog

Colophon
Copyright © 2022, 2023 by the KU Leuven PLATO CGSE Team

1st Edition — February 2023

This manual is written in PyCharm using the AsciiDoc plugin. The PDF Book version is processed with
asciidoctor-pdf.

The manual is available as HTML from ivs-kuleuven/github.io. The HTML pages are generated with
Hugo which is an OSS static web-pages generator. From this site, you can also download the PDF
books.

The source code is available in a GitHub repository at ivs-kuleuven/plato-cgse-doc.

When you find an error or inconsistency or you have some improvements to the text, feel free to raise
an issue or create a pull request. Any contribution is greatly appreciated and will be mentioned in the
acknowledgement section.

PLATO-KUL-PL-MAN-0004 KU Leuven

Colophon | 3

http://ivs-kuleuven.github.io/plato-cgse-doc
https://github.com/ivs-kuleuven/plato-cgse-doc

Conventions used in this Book
We try to be consistent with the following typographical conventions:

Italic

Indicates a new term or …

Constant width

Used for code listings, as well as within paragraphs to refer to program elements like variable and
function names, data type, environment variables (ALL_CAPS), statements and keywords.

Constant width between angle brackets <text>

Indicates text that should be replaced with user-supplied values or by values determined by
context. The brackets should thereby be omitted.

When you see a $ … in code listings, this is a command you need to execute in a terminal (omitting
the dollar sign itself). When you see >>> … in code listings, that is a Python expression that you need
to execute in a Python REPL (here omitting the three brackets).

Setup versus setup

I make a distinction between Setup (with a capital S) and setup (with a small s). The Setup is used
when I talk about the object as defined in a Python environment, i.e. the entity itself that contains
all the definitions, configuration and calibration parameters of the equipment that make up the
complete test setup (notice the small letter 's' here).

(sometimes you may find setup in the document which really should be 'set up' with a space)

Using TABs

Some of the manuals use TABs in their HTML version. Below, you can find an example of tabbed
information. You can select between FM and EM info and you should see the text change with the
TAB.


This feature is only available in the HTML version of the documents. If you are
looking at the PDF version of the document, the TABs are shown in a frame where
all TABs are presented successively.

FM

In this TAB we present FM specific information.

EM

In this TAB we present EM specific information.

Using Collapse

Sometimes, information we need to display is too long and will make the document hard to read.
This happens mostly with listings or terminal output and we will make that information
collapsible. By default, the info will be collapsed, press the small triangle before the title (or the

KU Leuven PLATO-KUL-PL-MAN-0004

4 | Conventions used in this Book

title itself) to expand it.

 In the PDF document, all collapsible sections will be expanded.

▼ A collapsible listing

plato-data@strawberry:/data/CSL1/obs/01151_CSL1_chimay$ ls -l
total 815628
-rw-r--r-- 1 plato-data plato-data 7961 Jun 20 10:38 01151_CSL1_chimay_AEU-AWG1_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 9306 Jun 20 10:38 01151_CSL1_chimay_AEU-AWG2_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 309375 Jun 20 10:38 01151_CSL1_chimay_AEU-CRIO_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42950 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU1_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 43239 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU2_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42175 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU3_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42327 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU4_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42242 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU5_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 42269 Jun 20 10:38 01151_CSL1_chimay_AEU-PSU6_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 67149 Jun 20 10:38 01151_CSL1_chimay_CM_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 20051 Jun 20 10:38 01151_CSL1_chimay_DAQ6510_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 105 Jun 20 10:38 01151_CSL1_chimay_DAS-DAQ6510_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19721 Jun 20 10:38 01151_CSL1_chimay_DPU_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 22833 Jun 20 10:38 01151_CSL1_chimay_FOV_20230620_095819.csv
-rw-rw-r-- 1 plato-data plato-data 833754240 Jun 20 10:34 01151_CSL1_chimay_N-FEE_CCD_00001_20230620_cube.fits
-rw-r--r-- 1 plato-data plato-data 292859 Jun 20 10:38 01151_CSL1_chimay_N-FEE-HK_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 8877 Jun 20 10:38 01151_CSL1_chimay_OGSE_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19841 Jun 20 10:38 01151_CSL1_chimay_PM_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 188419 Jun 20 10:38 01151_CSL1_chimay_PUNA_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 7662 Jun 20 10:38 01151_CSL1_chimay_SMC9300_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 19781 Jun 20 10:38 01151_CSL1_chimay_SYN_20230620_095819.csv
-rw-r--r-- 1 plato-data plato-data 147569 Jun 20 10:38 01151_CSL1_chimay_SYN-HK_20230620_095819.csv
plato-data@strawberry:/data/CSL1/obs/01151_CSL1_chimay$

PLATO-KUL-PL-MAN-0004 KU Leuven

Conventions used in this Book | 5

Purpose
This document describes the concepts and some practicalities relative to the commanding of the
PLATO Cameras (AEU, FEE) and various GSEs to be controlled during the ground-based testing of the
PLATO Cameras.

The document shall be used to train members of the PLATO camera test team in operating the
Common-EGSE system and write commanding scripts for camera-level tests.

The present version still contains a few ‘TBW’, some of which will be filled thanks to inputs from the
Test Houses (TH), describing the location-specific GSE controls.

KU Leuven PLATO-KUL-PL-MAN-0004

6 | Purpose

Documents and Acronyms

Applicable documents

ID Document Title Document Number Issue

Reference Documents

ID Document Title Document Number Issue

RD-01 CAM Test EGSE User Manual PT-EVO-SYS-MA-0261-1 1

RD-02 Common-EGSE User Manual PLATO-KUL-PL-MAN-0001 0.1

RD-03 Test Specification PLATO-KUL-PL-TS-0001 2.7

RD-04 Common-EGSE ICD PLATO-KUL-PL-ICD-0002 1.0

RD-05 PLATO-AEU CAM TEST EGSE TMTC ICD PTO-ECO-SYS-ICD-0188 2B

RD-06 PLATO N-FEE ICD PLATO-MSSL-PL-ICD-0002 9.0

RD-07 Reverse clocking for N-CAMs PLATO-MSSL-PL-TN-0015 1.0

RD-08 N-FEE Readout Operations PLATO-MSSL-PL-TN-0012 2.1

RD-09 PLATO PL TCGSE UNIT Subsystems and
Equipment ICD and IDS

PTO-AST-PL-TCGSE-ICD-0012 10.0

RD-10 PLATO Instrument Coordinate Systems PLATO-OHB-PL-LI-0009 05

RD-11 PLATO Room temperature collimator user
manual

PLATO-UOL-PL-RP-0004 1

RD-12 R1_CalibrationReport PLATO-PL-CSL-RP-0031 3.0

RD-13 R2_CalibrationReport PLATO-PL-CSL-RP-0032 2.1

RD-14 N-FEE Conceptualised Operation Specification PLATO-MSSL-PL-SP-0015 2.0

RD-15 PLATO N-FEE PFM Register Map PLATO-MSSL-PL-FI-0004 1.0

RD-16 PLATO F-FEE CD ICD PLATO-DLR-PL-ICD-0007 2.6

Acronyms

AEU Ancillary Electronics Unit

API Application Programming Interface

CAM Camera

CCD Charged-Coupled Device

CGSE Common-EGSE

CSL Centre Spatial de Liège

PLATO-KUL-PL-MAN-0004 KU Leuven

Applicable documents | 7

CSV Comma-Separated Values

COT Commercial off-the-shelf

CTI Charge Transfer Inefficiency

CTS Consent to Ship

DPU Data Processing Unit

DSI Diagnostic SpaceWire Interface

EGSE Electrical Ground Support Equipment

EOL End Of Life

FAQ Frequently Asked Questions

FEE Front End Electronics

FITS Flexible Image Transport System

FPA Focal Plane Assembly/Array

GSE Ground Support Equipment

GUI Graphical User Interface

HDF5 Hierarchical Data Format version 5 (File format)

HK Housekeeping

IAS Institut d’Astrophysique Spatiale

ICD Interface Control Document

LDO Leonardo space, Italy

MGSE Mechanical Ground Support Equipment

MMI Man-Machine Interface

NCR Non-Conformance Report

NRB Non-Conformance Review Board

OBSID Observation Identifier

OGSE Optical Ground Support Equipment

OS Operating System

PDF Portable Document Format

PID Process Identifier

PLATO PLAnetary Transits and Oscillations of stars

PPID Parent Process Identifier

PLM Payload Module

PVS Procedure Variation Sheet

REPL Read-Evaluate-Print Loop, e.g. the Python interpreter prompt

RMAP Remote Memory Access Protocol

KU Leuven PLATO-KUL-PL-MAN-0004

8 | Documents and Acronyms

SFT Short Functional Test

SpW SpaceWire

SQL Structured Query Language

SRON Stichting Ruimte-Onderzoek Nederland

SUT System Under Test

SVM Service Module

TBC To Be Confirmed

TBD To Be Decided or To Be Defined

TBW To Be Written

TC Telecommand

TCS Thermal Control System

TH Test House

TM Telemetry

TOU Telescope Optical Unit

TS Test Scripts

TUI Text-based User Interface

TV Thermal Vacuum

UM User Manual

USB Universal Serial Bus

YAML YAML Ain’t Markup Language

PLATO-KUL-PL-MAN-0004 KU Leuven

Acronyms | 9

1. Introduction

1.1. Contents
This document describes the usage of the PLATO Common-EGSE to command the PLATO camera (SUT)
and the ground support equipment (GSE) during the PLATO camera ground testing.

Throughout this document, we use the following notation:

• a command to be executed in a terminal on either the egse-server or on the client machine.

$ command

• a command to be executed in a Python session. This Python session will always be running on the
client machine.

>>> command

1.2. EGSE commanding software environment
The user interface to the PLATO camera EGSE is a software application developed at KU Leuven in
collaboration with the test houses for site specific components. It provides graphical user interfaces to
control the software processes in the system, monitor telemetry parameters, provide the operator
with quick-look analysis images of the camera detectors, etc. It also features a commanding interface
in Python. The commanding logic is entirely defined in Python. The hardware interfaces have been
implemented in Python (possibly accessing a library written in the C programming language), and the
user is accessing these by executing higher-level Python functions in a Python interpreter.

1.3. How different user profiles use the software
• test-operator: running a test, launching scripts and inspecting results of quick look analysis script

at the test house. The test operator is knowledgeable of the Common-EGSE, Test Scripts, all GSE
and basic operation of the PLATO Camera (SUT).

• test-developer: translating test specification into commanding scripts, writing quick-look analysis
scripts.

• offline-analyst: loads the test data from the archive and process this data for validation and
feedback.

• site-operator: manages the test-infrastructure, i.e. the test-environment in the TH, administration
of egse-server and client machines.

• site-developer: implements test house specific software for test equipment used at test houses.
This includes but is not limited to device drivers, GUI applications, local setups.

Typical flow of events and responsibilities:

KU Leuven PLATO-KUL-PL-MAN-0004

10 | 1. Introduction

• Long before the tests are executed, the site-developer implements the interfaces to the test-
equipment in the Common-EGSE.

• Months before the test, the test-developer turns the test-specification into a commanding script.

• Minutes before the test, the site-operator starts up the system, activates all connections, launches
GUIs, loads the proper system configuration into the system, and gives a go-ahead to the test-
operator.

• At t0, the test-operator launches the execution of the commanding script and follows it in real-
time.

• At the end of the execution, the analyst gets hold of the data and starts the analysis.

This commanding manual is mainly targeted at the test developers, the test operators and the
analysts. The site-operators and site-developers will find most of the information they need in the
Common-EGSE installation manual and user manual.

PLATO-KUL-PL-MAN-0004 KU Leuven

1.3. How different user profiles use the software | 11

https://ivs-kuleuven.github.io/plato-cgse-doc/docs/installation-manual/
https://ivs-kuleuven.github.io/plato-cgse-doc/docs/user-manual/

2. Software Overview
The PLATO commanding during ground-based testing resides upon three GitHub repositories:

• plato-common-egse (link to documentation)

• plato-test-scripts (link to documentation)

• plato-cgse-conf

Amongst others, the documentation will point you to the installation guides, list the low-level
commands that are available in the Common-EGSE, list the low-level building blocks implemented in
the test scripts etc.

2.1. The plato-common-egse GitHub repository
This repository contains the background infrastructure to interface with the actual hardware in the
test housess. The complete documentation can be found in the link above, and in RD-02, see Reference
Documents.

In a nutshell, it provides access to all the necessary functions to

• Operate the camera under test

• Operate all devices in the test-environment (in or out of the TVAC chamber)

• Record all telemetry

◦ From the camera (image data & HK)

◦ From the test-environment (HK)

• Maintain the setup and calibration file information under configuration control (see ‘setup’
below).

• Command the camera and the test-environment devices from Python scripts (see plato-test-scripts)

The THs are expected to contribute to this repository, to implement the interfaces to their own
environment and devices, so they should fork this repository in order to be able to create pull
requests.

The test-operators are not expected to contribute to this repository, so they should clone the
repository.

2.2. The plato-test-scripts GitHub repository
This repository contains the Python scripts

• for commanding the tests as defined in the test specification,

• for analysing the data

The commanders and the THs are expected to contribute to this repository, so everyone should fork it.

KU Leuven PLATO-KUL-PL-MAN-0004

12 | 2. Software Overview

https://github.com/IvS-KULeuven/plato-common-egse
https://ivs-kuleuven.github.io/plato-cgse-doc/
https://github.com/IvS-KULeuven/plato-test-scripts
https://ivs-kuleuven.github.io/plato-cgse-doc/
https://github.com/IvS-KULeuven/plato-cgse-conf

2.3. The plato-cgse-conf GitHub repo
This repository holds the setups saved during the tests under configuration control. The concept of
setup is explained in Chapter 6.

No one is expected to contribute directly to this repository as it is maintained by the Common-EGSE.
The repository can be cloned for inspection.

2.4. Software installation
Operators use the software installation at the test house on the operational machine. The installation
is read only and under configuration control. Only official releases shall be installed on the
operational machines. The installation is maintained by the site-operator. Please refer to the on-line
documentation of the Common-EGSE for full installation details.

$ git clone https://github.com/IvS-KULeuven/plato-common-egse.git
$ git checkout tags/<release-tag> -b <release-tag>-branch
$ python3.8 setup.py install --home=/cgse

The test-developer uses an installation that is more suited for development of scripts and can be
changed. The test-developer has forked the repo on the GitHub website to her personal GitHub
account and clones the repo from that account. She works in a virtual environment. Please refer to the
Common-EGSE on-line docs for full details.

$ git clone https://github.com/<github-username>/plato-common-egse.git
$ source venv/bin/activate
$ python3.8 setup.py develop

Please note that the installation examples above are simplified and serve as a reminder. The full
installation process is detailed in the on-line Common-EGSE documentation.

2.5. Naming Convention
The table below summarises the coding style that we have adopted for this project. More detailed
information can be found in the on-line documentation at github.io: Development notions: Style Guide

Table 1. Summary of the adopted code style.

Type Style Examples

Variables, building_block
parameters, Entries in setup files

lowercase with
underscores

key, last_value, model, index, user_info

Methods, functions,
building_blocks

lowercase with
underscores

get_value, set_mask, create_image

Classes CapWords (no
underscores)

ProcessManager, ImageViewer, CommandList,
Observation, MetaData

PLATO-KUL-PL-MAN-0004 KU Leuven

2.3. The plato-cgse-conf GitHub repo | 13

https://ivs-kuleuven.github.io/plato-cgse-doc/docs/installation-manual/
https://ivs-kuleuven.github.io/plato-cgse-doc/docs/installation-manual/
https://ivs-kuleuven.github.io/plato-cgse-doc/docs/installation-manual/
https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/developer-manual.html#_part_i_development_notions

Type Style Examples

Constants UPPERCASE
with
underscores

MAX_LINES, BLACK, COMMANDING_PORT

Modules & Packages lowercase
without
underscores

dataset, commanding, multiprocessing

Top-level scripts

Top-level scripts start with the test identifier from the test specification, followed by a descriptive
name in lowercase, words separated by underscores, e.g.,
cam_tvpt_010_best_focus_determination.py.

Building blocks

Building blocks are normal function definitions that are decorated with @building_block to
identify them as separated by one underscore, i.e., snake_case.

User utility functions

User functions are normal Python functions and follow normal Python function naming
conventions, i.e., all lower case and words separated by underscores, i.e., snake_case.

KU Leuven PLATO-KUL-PL-MAN-0004

14 | 2. Software Overview

3. Test script architecture

3.1. Overview
At the user level, the PLATO commanding resides upon a few key concepts

• Building-block: a building block is a Python function implementing the commands corresponding
to a logical entity within a test (a Lego©-bloc) or an entire test (the Lego©-house, called “test-
script”).

• Test-script: a test-script is a building block encapsulating all the commands necessary for a given
test. The name of a test-script should identify it in the test-specification document (RD-03). The
test-script should be unique, i.e. the test script for any given test should be useable in all test-
houses.

• Execution: building blocks, and only building blocks, can be executed, i.e. run on the operational
machine inside the test-environment.

• Observation: executing a building block triggers the creation of an “observation”. An observation
is defined by a unique “observation identifier” (obsid) and lasts as long as the execution of the
corresponding test (building block).

• Setup: a Setup encapsulates the complete configuration of the test-environment (test-equipment)
and of the camera (test-item) as well as all calibration files associated either to the hardware, or
necessary for a given test.

More information on some of these elements are given in the next sections. The figure below
describes the generic software architecture in place for the PLATO commanding:

• At the top level

◦ a test script implements an entire test.

• At an intermediate level

◦ The test script can call Python functions (e.g. “calculate the next FOV position to visit”) or
lower level building blocks (e.g. “go to the next FOV position” or “acquire images over a 5x5
dither pattern”)

◦ Building blocks can call other building blocks, or regular Python functions (recursion is
forbidden within building blocks)

◦ Functions can call other functions, but should not call building blocks

• At the lowest level, the Common-EGSE software provides all the “atomic commands” necessary to
interface with the hardware. This layer allows to provide the users with user-friendly commands
(e.g. human-readable parameter names, and no bit-field or hexadecimal numbers to provide).

• The active test-setup is available at all levels to provide all necessary information with respect to
hardware or calibration.

PLATO-KUL-PL-MAN-0004 KU Leuven

3.1. Overview | 15

Figure 1. Test Scripts architecture and its relation to the Common-EGSE and the GSE and SUT.

3.2. Building block

3.2.1. Definition of a building block

A building block is a Python function marked with a specific decorator in the code. That simply means
that the line directly above the definition of the building block in the code should be @building_block:

Example of a building block definition:

@building_block
def move_filter_wheel(position=None):
 # your code comes here
 return True

All parameters of a building block are keyword parameters. That means the parameter name and its
value must be specified when calling the building block.

...
move_filter_wheel(position="A")
...

3.2.2. Building block justification

Execution: Building blocks are the only entity in the code that will be accepted for execution on the
operational machines in the test-environments (THs).

Structure: a unique identifier (BBID) is automatically attributed to every building block entering the

KU Leuven PLATO-KUL-PL-MAN-0004

16 | 3. Test script architecture

plato-test-scripts repository. At every moment during a test execution, the current BBID is recorded in
the data (TBC).

Organising a test script into a logical structure and implementing the underlying building blocks
accordingly will help structure the data, which in turn will be precious to ease the analysis.

For instance, if a test-script (BB1) is calling building blocks BB2 and BB3 sequentially, the telemetry
will contain a sequence of timestamps where the individual building-blocks start, or end.

Note that, as a further convenience, a building block counter (BBCOUNT) will also be recorded, which
is a natural number incremented by one every time the active BBID is changing, hence running from
0 to 4 in the example above (TBC).

3.2.3. The properties of a building block

Building blocks implement some safeguards, imposing a number of limitations on the code

• Building blocks cannot be called recursively. Beware of building blocks calling other building
blocks. Avoid too many layers. Avoid functions calling building blocks

• At run time, the names and the values of every arguments of a building blocks must be explicitly
given. Building blocks with many parameters are hence strongly discouraged

• def my_block(param1, param2=3): is forbidden for 2 reasons

◦ Positional arguments are forbidden (param1)

◦ All arguments must be given the default value None (param2). The reason for this is that we
want, when the building block is called, all arguments to be passed explicitly, not implicitly.

3.2.4. Using default argument values in a building block


we strongly discourage using this way of 'work around default parameters'. It is
currently still implemented in the core system, but this behaviour might/will be
removed in the future.

In the code definition, it is not possible (prev. subsection).

It is nevertheless possible via an input file. The input file must

• be in YAML format

• bear the same name as the building block it corresponds to

• be put in directory camtest/commanding/input

Example: building block camtest/commanding/hk_only.py

@building_block
def hk_only(wait_time=None):
 time.sleep(wait_time)

Corresponding input file camtest/commanding/input/hk_only.yaml

PLATO-KUL-PL-MAN-0004 KU Leuven

3.2. Building block | 17

'hk_only' - Building Block
Args:
 wait_time: 10 # System idle time [seconds]

3.2.5. Utility building blocks

A collection of low-level, general purpose building blocks is already provided in the commanding
section of the plato-test-scripts (camtest/commanding), to help the test-developer, for instance to
manipulate some hardware device, tune the OGSE light intensity, set the FEEs in different operating
modes, acquire a number of full-frame images etc.

KU Leuven PLATO-KUL-PL-MAN-0004

18 | 3. Test script architecture

4. Test execution

4.1. Test execution: execute
The execution of a test is triggered by the Python function execute(). Like @building_block, it is a core
functionality implemented by plato-test-scripts. It can be used with the following syntax:

>>> execute(building_block_name, param1=value1, param2=value2)

All parameters must be specified by their name. No positional argument is allowed; hence the order of
the parameters is not important. Note that the building block name does not have the paranthesis
'()', only the name of the building block is given.

The execute command will start an observation and end the observation when the building block
returns. Starting and ending an observation is an expensive operation in the sense that it notifies
underlying mechanisms like the configuration and storage manager of the observation so they can
take action. Therefore, although any building block can be executed using the execute(..) command,
this should really only be used for higher level building blocks and from the Python prompt. Never
use the execute(..) function inside a building block.

4.2. Preview the command sequence


This functionality will be removed in the future as it has only limited applicability
and doesn’t give a full consistent view of the command sequence.

It is possible to perform a dry-run of a building-block by running generate_command_sequence() instead
of execute(), with the same syntax. Be aware that the duration of the dry run may be as long as the
execution itself!

>>> generate_command_sequence(building_block_name, param1=value1, param2=value2)

This feature will execute all building blocks and functions without actually sending command strings
to the test equipment. The current implementation does not take return values from device queries
into account which makes it less suited for test scripts that need this feedback for conditional
processing, e.g., waiting until a temperature is reached.

Note that execute and generate_command_sequence will only work under a set of restrictive conditions

• Disposing of software simulators for every piece of equipment addressed by the test. Simulators
exist in the EGSE for the N-FEEs and most of the equipment to be used in CSL.

• Emulating an operational environment on your machine. We refer you to the EGSE
documentation for the details of what this entails

PLATO-KUL-PL-MAN-0004 KU Leuven

4.1. Test execution: execute | 19

4.3. Executing short building blocks individually
The execute command will trigger the creation of an obsid and an associated data stream. In the case
were the operator (e.g. while setting up and testing the TH environment) want to execute short
commands or building blocks outside of the scope of a test-script, this is an overkill and will make the
analysis of the resulting data very cumbersome, because the data will be distributed over many very
very short obsids.

To work around this, it is possible to manually start and stop an observation

>>> start_observation("Running a few examples")

Will start an observation, attribute it an obsid and the associated data stream, just like what happens
at the start of an execute.

After that any command passed (individually or within a function/building block) and any data
generated will be recorded as part of the running obsid:

>>> command(args)
>>> func(args)
>>> building_block(args)

Finally

>>> end_observation()

Will close the observation (or do nothing if none is running).

KU Leuven PLATO-KUL-PL-MAN-0004

20 | 4. Test execution

5. Data acquisition and storage
All device housekeeping data and all camera telemetry data (image data and FEE HK) are
automatically stored by the Storage Manager. You don’t need to collect and save data from within your
scripts. Data is stored in a location on the egse-server and accessible from the desktop client machines
running the tests and analysis scripts. This location is defined in the environment variable
PLATO_DATA_STORAGE_LOCATION, which points to a /data directory.


Since release 2023.6.0+CGSE, the environment variable PLATO_DATA_STORAGE_LOCATION
will not include the SITE ID anymore.

Several types of data are generated during a test campaign

• Housekeeping telemetry (saved in CSV files)

◦ From the test-item (e.g. TOU TRP-1 temperature)

◦ From the test-environment (e.g. OGSE filter wheel position)

• SpaceWire packets and register maps received from the FEE (saved in HDF5 files)

• Image data from the camera (saved in FITS files)

• Command history logging the test executions

5.1. Housekeeping telemetry
The acquisition of housekeeping telemetry is automatically started by the egse-server. In practice that
means that the telemetry from all devices connected to the active egse-server is automatically, and
constantly recorded (see the Common-EGSE documentation for further details).

 Please note that all timestamps saved in housekeeping files are UTC.

The housekeeping telemetry is structured this way

• One file per day saved in a sub-folder of ‘daily’. The sub-folder is the YYYYMMDD of that day.

• One CSV file per source of telemetry, i.e. for example one from the TCS, one for the hexapod
(controller), one for the FEE etc.

• Each CSV file contains a timestamp in the first columns, and the various entries in the subsequent
columns.

• All TM are recorded at 1Hz by default. This is configurable on a per-device-controller basis (= per
CSV file)

The csv filenames have the following structure:

YYYYMMDD_SITE_DEVICE.csv

Where:

PLATO-KUL-PL-MAN-0004 KU Leuven

5.1. Housekeeping telemetry | 21

• YYYYMMDD is the day the telemetry was taken

• SITE is the identifier for the test facility: CSL, IAS, INTA, SRON, KUL, ESA, …

• DEVICE is a mnemonic referring to the device controller issuing these data

For example, the daily file at CSL for the Hexapod PUNA housekeeping on June 8th, 2023 is
20230608_CSL_PUNA.csv. The header of the CSV files contains explicit column-names. The complete
information on the content and format of the telemetry files is contained in the ICD (RD-04, see
Reference Documents).

▼ Excerpt of the PUNA hexapod telemetry file 20230608_CSL_PUNA.csv:

timestamp,GCSL1_HEX_USER_T_X,GCSL1_HEX_USER_T_Y,GCSL1_HEX_USER_T_Z,GCSL1_HEX_USER_R_X,GCSL1_HEX_USER_R_Y,GCSL1_HE
X_USER_R_Z,GCSL1_HEX_MACH_T_X,GCSL1_HEX_MACH_T_Y,GCSL1_HEX_MACH_T_Z,GCSL1_HEX_MACH_R_X,GCSL1_HEX_MACH_R_Y,GCSL1_H
EX_MACH_R_Z,GCSL1_HEX_ALEN_1,GCSL1_HEX_ALEN_2,GCSL1_HEX_ALEN_3,GCSL1_HEX_ALEN_4,GCSL1_HEX_ALEN_5,GCSL1_HEX_ALEN_6
,GCSL1_HEX_HOMED,GCSL1_HEX_IN_POS
...
2023-06-08T10:00:01.560+0000,0.014144539424,-0.003925761937,-3.489246984,-0.013989085157,0.0010419456108,-
0.00799891817,0.390713812,0.1455886605,17.7970682,0.03226852454,0.06991046997,0.2646041152,205.93219583,206.16533
51,205.52915657,205.97228441,205.88274269,206.14508725,True,True
2023-06-08T10:00:02.560+0000,0.014144539424,-0.003925761937,-3.489246984,-0.013989085157,0.0010419456108,-
0.00799891817,0.390713812,0.1455886605,17.7970682,0.03226852454,0.06991046997,0.2646041152,205.93219583,206.16533
51,205.52915657,205.97228296,205.88274269,206.14508725,True,True
2023-06-08T10:00:03.563+0000,0.014144539424,-0.003925761937,-3.489246984,-0.013989085157,0.0010419456108,-
0.00799891817,0.390713812,0.1455886605,17.7970682,0.03226852454,0.06991046997,0.2646041152,205.93219583,206.16533
51,205.52915657,205.97227986,205.88274269,206.14508725,True,True
2023-06-08T10:00:04.562+0000,0.014144539424,-0.003925761937,-3.489246984,-0.013989085157,0.0010419456108,-
0.00799891817,0.390713812,0.1455886605,17.7970682,0.03226852454,0.06991046997,0.2646041152,205.93219583,206.16533
51,205.52915657,205.97227986,205.88274579,206.14508725,True,True
2023-06-08T10:00:05.562+0000,0.014144539424,-0.003925761937,-3.489246984,-0.013989085157,0.0010419456108,-
0.00799891817,0.390713812,0.1455886605,17.7970682,0.03226852454,0.06991046997,0.2646041152,205.93219583,206.16533
51,205.52915657,205.97227986,205.88274269,206.14508725,True,True
2023-06-08T10:00:06.581+0000,0.014144539424,-0.003925761937,-3.489246984,-0.013989085157,0.0010419456108,-
0.00799891817,0.390713812,0.1455886605,17.7970682,0.03226852454,0.06991046997,0.2646041152,205.93219583,206.16534
276,205.52915967,205.97228296,205.88274579,206.14508725,True,True

5.2. Observation
Image data are usually only generated during a test execution. In order to facilitate the selection of
data pertaining to a particular test execution, we are using the concept of ‘observation’
interchangeably with the name “test”.

An observation corresponds to a single execution of a given test, i.e. a single use of the execute()
command, or all commands executed between a start_observation and an end_observation.

A unique obsid is automatically attributed to every observation. The filenames of housekeeping files
are constructed from the unique obsid and a limited set of useful metadata about the test execution,
with the following structure:

TEST_SITE_SETUP_DEVICE_YYYYMMDD_HHMMSS.csv

where:

• TEST is a unique test identifier, this is the first part of a full OBSID,

KU Leuven PLATO-KUL-PL-MAN-0004

22 | 5. Data acquisition and storage

• SITE is the identifier for the test facility: CSL, IAS, INTA, SRON, KUL, ESA, …

• SETUP is the unique setup_id (section below)

• DEVICE is a mnemonic referring to the source of the data, e.g. the device controller issuing these
data, the TCS EGSE, the N-FEE, etc.

• YYYYMMDD_HHMMSS points to the start of the test execution (UTC)

The first three items in the above list form the full OBSID. The OBSID can be abbreviated to the TEST-
ID and the SITE-ID thereby omitting the SETUP-ID which can be automatically recovered from the
meta data.

For instance, CSV files for observation 00757 performed at CSL could be:

• 00757_CSL_00009_PUNA_20201013_162037.csv

• 00757_CSL_00009_CM_20201013_162037.csv

(PUNA points to a hexapod controller and CM refers to the Configuration Manager of the Common-
EGSE).

For FITS files with the camera image data, the naming convention is similar (though we leave out the
timestamp), with a sequencing number when the data volume justifies splitting of the data over
multiple files.

• 00757_CSL_00009_N-FEE_CCD_00001_20201013_cube.fits

• 00757_CSL_00009_N-FEE_CCD_00002_20201013_cube.fits

Note that we used to have two types of FITS files: FITS files in which the data is organised in a flat
structure, and FITS files in which the data is organised in cubes (with filenames as described above).
The former will have "image" in their names (rather than "cube") but will be removed once the
corresponding cube-structure FITS file has been created.

All data corresponding to the obsid are gathered in a dedicated directory named ‘obs’. That means
that the fraction of the regular housekeeping data acquired during the execution of the observation is
duplicated in that directory, keeping the same format as in the “daily” directory.

The data is hence stored in two different directories:

• A “daily” directory, accumulating housekeeping telemetry data all day long (e.g. for trend
analysis). Each day has its own sub-folder.

• An “obs” directory, recording only observation-specific data and housekeeping in sub-folders
containing the camera name also, e.g. 01061_CSL1_duvel is observation 1061 taken in clean room 1
at CSL for the FM#3, i.e. Duvel.

PLATO-KUL-PL-MAN-0004 KU Leuven

5.2. Observation | 23

Figure 2. Timeline illustrating how data is generated and stored. Telemetry for all devices is continuously
generated and stored in the daily files. When an observation is started, telemetry is also stored in the
'obs' area under the sub-folder for the current observation. These telemetry are a mirror of the daily
telemetry for that observation. Time goes from left to right.

5.3. Image data
Image data are saved for each test execution as FITS files, with the corresponding housekeeping in csv
files (see above).

Images are saved in FITS format, as UNSIGNED integers. You will have to cast them to float explicitly
in python to avoid negative numbers to be wrongly interpreted.

Splitting: The DPU monitors a set of "crucial parameters" (see further) and each time at least one of
these changes, a new FITS file will be created, provided the FEE is in full-image mode (or full-image
pattern mode). Additionally, a maximum number of extensions is specified in the configuration (TBD).
When that number is achieved, the image data are split, i.e. a new FITS file is opened to store the next
block of image data.

Slicing: In a future version of the software, it will be possible to insert a given command in the test
scripts in order to force the creation of a new FITS file. This will allow for a more flexible slicing of the
data, i.e. enforce a clearer structure of the data, matching the commanding logic, and will facilitate the
data analysis and interpretation.

Crucial parameters: As mentioned before, the DPU monitors (for changes in) crucial parameters.
These are:

• the first and last row that will be transmitted (v_start and v_end),

• the last column that will be transmitted (h_end),

• the number of rows that will be dumped after the requested number of rows have been
transmitted (rows_final_dump),

• the readout order of the CCDs (ccd_readout_order),

• and the FEE mode (ccd_mode_config), which should become/stay full-image mode or full-image
pattern mode.

KU Leuven PLATO-KUL-PL-MAN-0004

24 | 5. Data acquisition and storage

5.3.1. Data products

During the camera tests, the DPU will be configured such that a specific part of the E- and/or F-side of
the selected CCDs will be transmitted (in the form of SpW packets) for a specified number of cycles (as
explained in Section 12.4.2). The following information will be reconstructed from these SpW packets
and stored in FITS files:

• the transmitted image data from the selected side(s) of the selected CCDs, for all cycles,

• the transmitted serial pre-scan data of the selected side(s) of the selected CCDs, for all cycles,

• the transmitted serial over-scan data of the selected side(s) of the selected CCDs, for all cycles,

• the transmitted parallel over-scan data of the selected side(s) of the selected CCDs, for all cycles.

While the SpW packets come in, the individual exposures are stored in individual extensions in FITS
files that carry "images" in their name. This type of data arrangement is called a "flat structure". When
there’s a change in crucial parameters, a new FITS file will be constructed (with "cube" in its name),
based on the flat-structure FITS file, in which the exposures are aggregated into cubes. The original,
flat-structure file will be removed from the system.

For analysis, only the FITS files with the cubes will be available, and therefore only the structure of
these will be discussed in the section below.

In case both sides of a CCD are selected, the image data of both sides will be stitched together before
storing it in the FITS file. This will also be done for the parallel over-scan data (if present). For the
serial pre-scan and the serial over-scan, the information is stored per CCD side.

5.3.2. Internal structure

Each of the extensions (apart from the PRIMARY extension) will occur only once and comprise a 3D
data array and a header with the metadata that is specific to that extension. The name of an extension
will reflect what type of data product it comprises (e.g. image data of the F-side of CCD2, serial pre-
scan data of the E-side of CCD3, etc.).

Although we have provided a set of convenience functions (see below) to extract information from a
FITS file without being exposed to the internal details, we want to explain the internal structure in
more detail.

The following extensions can be included in the FITS files:

Extension
name

Content

PRIMARY Contains only header information, with metadata that pertains to the whole data
product (site name, etc.). This extension always be present.

SPRE_<1/2/3/4>_
<E/F>

Serial pre-scan data for the E-/F-side of CCD1/2/3/4. This extension will occur once
(with all exposures included), if that side of that CCD was transmitted.

SOVER_<1/2/3/4
>_<E/F>

Serial over-scan data for the E-/F-side of CCD1/2/3/4. I f this information is
transmitted, this extension will occur once.

PLATO-KUL-PL-MAN-0004 KU Leuven

5.3. Image data | 25

Extension
name

Content

POVER_<1/2/3/4
>_<E/F>

Parallel over-scan data for the E-/F-side of CCD1/2/3/4. If this information is
transmitted, this extension will occur once.

IMAGE_<1/2/3/4
>_<E/F>

Image data for the E-/F-side of CCD1/2/3/4. This extension will occur once (with all
exposures included), if that-side of that CCD was transmitted.

WCS-
TAB_<1/2/3/4>_
<E/F>

Table with a single column (with the name TIME) in which the relative time (in
seconds) w.r.t. the first exposure (of any CCD (side)) in the file is listed.

Example 1: 4CCDs, full frame, 10 cycles

Relevant FEE parameters (see Section 12.4.2]):

• ccd_readout = [1, 2, 3, 4];

• ccd_side = BOTH;

• num_cycles = 10;

• row_start = 0;

• row_end = 4510 + 30 - 1 (i.e. 4510 rows from the image + 30 rows from the parallel over-scan);

Structure/extensions of the FITS file:

• PRIMARY: The primary extension (PrimaryHDU object). This does not contain any transmitted data.

• For CCD1:

◦ 1 extension SPRE_1_E: The serial pre-scan for the E-side of CCD1 (10 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SPRE_1_F: The serial pre-scan for the F-side of CCD1 (10 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SOVER_1_E: The serial over-scan for the E-side of CCD1 (10 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 in extension SOVER_1_F: The serial over-scan for the F-side of CCD1 (10 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 extension POVER_1_E: The parallel over-scan for the E-side of CCD1 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension POVER_1_F: The parallel over-scan for the F-side of CCD1 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension IMAGE_1_E: The image data for the E-side of CCD1 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

◦ 1 extension IMAGE_1_E: The image data of CCD1 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

• For CCD2:

◦ 1 extension SPRE_2_E: The serial pre-scan for the E-side of CCD2 (10 frames)

KU Leuven PLATO-KUL-PL-MAN-0004

26 | 5. Data acquisition and storage

→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SPRE_2_F: The serial pre-scan for the F-side of CCD2 (10 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SOVER_2_E: The serial over-scan for the E-side of CCD2 (10 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 in extension SOVER_2_F: The serial over-scan for the F-side of CCD2 (10 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 extension POVER_2_E: The parallel over-scan for the E-side of CCD2 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension POVER_2_F: The parallel over-scan for the F-side of CCD2 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension IMAGE_2_E: The image data for the E-side of CCD2 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

◦ 1 extension IMAGE_2_E: The image data of CCD2 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

• For CCD3:

◦ 1 extension SPRE_3_E: The serial pre-scan for the E-side of CCD3 (10 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SPRE_3_F: The serial pre-scan for the F-side of CCD3 (10 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SOVER_3_E: The serial over-scan for the E-side of CCD3 (10 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 in extension SOVER_3_F: The serial over-scan for the F-side of CCD3 (10 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 extension POVER_3_E: The parallel over-scan for the E-side of CCD3 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension POVER_3_F: The parallel over-scan for the F-side of CCD3 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension IMAGE_3_E: The image data for the E-side of CCD3 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

◦ 1 extension IMAGE_3_E: The image data of CCD3 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

• For CCD4:

◦ 1 extension SPRE_4_E: The serial pre-scan for the E-side of CCD4 (10 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SPRE_4_F: The serial pre-scan for the F-side of CCD4 (10 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 10 layers

◦ 1 extension SOVER_4_E: The serial over-scan for the E-side of CCD4 (10 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 in extension SOVER_4_F: The serial over-scan for the F-side of CCD4 (10 frames)

PLATO-KUL-PL-MAN-0004 KU Leuven

5.3. Image data | 27

→ dimensions: 15 columns x (4510 + 30) rows x 10 layers

◦ 1 extension POVER_4_E: The parallel over-scan for the E-side of CCD4 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension POVER_4_F: The parallel over-scan for the F-side of CCD4 (10 frames)
→ dimensions: 2255 columns x 30 rows x 10 layers

◦ 1 extension IMAGE_4_E: The image data for the E-side of CCD4 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

◦ 1 extension IMAGE_4_E: The image data of CCD4 (10 frames)
→ dimensions: 2255 columns x 4510 rows x 10 layers

Example 2: E-side of CCD2, 100 lines in partial-readout mode, 25 cycles

Relevant FEE parameters (see Section 12.4.2]):

• ccd_readout = [2, 2, 2, 2];

• ccd_side = E;

• num_cycles = 25;

• row_end = row_start - 100 - 1

Note that this means that the E-side of CCD2 will be transmitted 4x25 times.

Structure/extensions of the FITS file:

• PRIMARY: The primary extension (PrimaryHDU object). This does not contain any transmitted data.

• For CCD2:

◦ 1 extension SPRE_2_E: The serial pre-scan for the E-side of CCD2 (4x25 frames)
→ dimensions: 25 columns x (4510 + 30) rows x 100 layers

◦ 1 extension SOVER_2_E: The serial over-scan for the E-side of CCD2 (4x25 frames)
→ dimensions: 15 columns x (4510 + 30) rows x 100 layers

◦ 1 extension POVER_2: The parallel over-scan for the E-side of CCD2 (4x25 frames)
→ dimensions: 4510 columns x 30 rows x 100 layers

◦ 1 extension IMAGE_2: The image data of CCD2 (4x25 frames)
→ dimensions: 4510 columns x 4510 rows x 100 layers

5.3.3. Inspecting the content

In the test scripts analysis package, i.e. the fitsfiles.py in camtest.analysis.functions, a number of
convenience functions have been implemented to access information in the FITS files without detailed
knowledge of the file structure. The remainder of this section will explain how to use these functions
to access the different data parts in the FITS files.

5.3.3.1. Overview

The structure of the FITS files can be inspected with the following commands:

KU Leuven PLATO-KUL-PL-MAN-0004

28 | 5. Data acquisition and storage

>>> get_overview(filename)

The output looks like to this (here only the E-side of CCD1 has been transmitted, without parallel over-
scan):

No. Name Ver Type Cards Dimensions Format
0 PRIMARY 1 PrimaryHDU 5 ()
1 SPRE_1_E 0 ImageHDU 12 (25, 100) float64
2 SOVER_1_E 0 ImageHDU 12 (15, 100) float64
3 IMAGE_1 0 ImageHDU 28 (2255, 100) float64
4 SPRE_1_E 0 ImageHDU 12 (25, 100) float64
5 SOVER_1_E 0 ImageHDU 12 (15, 100) float64
6 IMAGE_1 0 ImageHDU 28 (2255, 100) float64
7 SPRE_1_E 0 ImageHDU 12 (25, 100) float64
8 SOVER_1_E 0 ImageHDU 12 (15, 100) float64
9 IMAGE_1 0 ImageHDU 28 (2255, 100) float64
10 SPRE_1_E 0 ImageHDU 12 (25, 100) float64
11 SOVER_1_E 0 ImageHDU 12 (15, 100) float64
12 IMAGE_1 0 ImageHDU 28 (2255, 100) float64

Alternatively, you can get hold of a list with the extension names with

>>> get_ext_names(filename)

5.3.3.2. Primary header

The primary header can be retrieved as

>>> primary_header = get_primary_header(filename)

Note that all headers (for the primary header as well as for the other datasets) are returned as
astropy.io.fits.header.Header objects. To get hold of the value of a specific header key, use:

>>> header[key]

The relevant keywords in the primary header are:

Keyword Description

LEVEL This is present for historical reason and is fixed at 2, which indicates that it
is a FITS file in which the data has been arranged into cubes.

V_START The index of the first row that is transmitted.

V_END The index of the last row that is transmitted.

H_END The index of the last column that is transmitted.

ROWS_FINAL_DUMP The number of rows that are dumped after the requested number of rows
is transmitted.

PLATO-KUL-PL-MAN-0004 KU Leuven

5.3. Image data | 29

Keyword Description

TELESCOP Set to "PLATO".

INSTRUME The camera ID (as taken from the setup).

SITENAME The name of the test site at which the data was acquired.

SETUP The setup ID.

CCD_READOUT_ORDER String representation of an array with the order inwhich the CCDs will be
read out.

CYCLETIME The image cycle time [s].

READTIME The time needed to read out the requested part for a single CCD side [s].

OBSID The observation identifier.

DATE-OBS The timestamp of the first exposure (of any side of any CCD in the file).

CGSE Version of the Common EGSE with which the FITS file was produced.

5.3.3.3. Images

The image data of a specific exposure (counting starts at zero) of a specific side of a specific CCD can
be retrieved as a numpy array, as follows:

>>> image_data = get_image_data(filename, ccd_number, ccd_side, exposure_number)

You can retrieve the image cubes and header for a specific side of a specific CCD as follows:

>>> image_cube_data = get_image_cube_data(filename, ccd_number, ccd_side)
>>> image_cube_header = get_image_cube_header(filename, ccd_number, ccd_side)

The relevant keywords in the image header are:

Keyword Description

NAXIS1 The number of columns in the image area of the CCD, that are transmitted (max
2255).

NAXIS2 The number of rows in the image area of the CCD, that are transmitted (max 4510).

NAXIS3 The number of exposures.

FOCALLEN The focal length of the telescope [mm].

CTYPE1/CTYPE2 Set to "LINEAR" to indicate that a linear coordinate transformation is used (between
pixels and mm), both in the column and row direction.

CTYPE3 Set to "TIMETAB" to indicate that the 3rd axis will be characterised by tabulated
(time) values. In the older FITS files, this was set to "TIME-TAB" (consistent with the
Greisen & Calabretta papers), but the C code underlying astropy and the traditional
FITS viewer need it to be "TIMETAB" instead.

KU Leuven PLATO-KUL-PL-MAN-0004

30 | 5. Data acquisition and storage

Keyword Description

CUNIT1/CUNIT2 Set to "MM" to indicate that the focal-plane coordinates are expressed in mm, both
in the column and row direction.

CUNIT3 Set to "s" to indicate that the time is expressed in s.

CDELT1/CDELT
2

The pixels size [mm], both in the column and row direction.

PS3_0 Set to "WCS-TAB_<1/2/3/4>_<E/F>" to indicate the the 3rd axis is characterised by the
values in in the table, that is stored in a extension with that name.

PS3_1 Set to "TIME" to indicate that the 3rd axis is characterised by the values in the table
(see PS3_0) in the column with that name.

SITENAME The name of the test site at which the data was acquired.

EXTNAME The extension name, following the convention:

IMAGE_<CCD number (1/2/3/4)>_<CCD side (E/F)>

CCD_ID The CCD number (1/2/3/4).

CROTA2 The orientation angle of the CCD [degrees]. This indicates over which angle the CCD
reference frame is rotated w.r.t. the focal-plane reference plane, in counter-
clockwise direction.

CD1_1 The product of the pixel size and the cosine of the CCD orientation angle.

CD1_2 The negative product of the pixel size and the sine of the CCD orientation angle.

CD2_1 The product of the pixel size and the sine of the CCD orientation angle.

CD2_2 The product of the pixel size and the cosine of the CCD orientation angle.

CRVAL1 The focal-plane x-coordinate of the CCD origin [mm].

CRVAL2 The focal-plane y-coordinate of the CCD origin [mm].

CRPIX1 The column coordinate of the CCD origin w.r.t. the first transmitted column of the
image area.

CRPIX2 The row coordinate of the CCD origin w.r.t. the first transmitted row of the image
area.

OBSID The observation identifier.

DATE-OBS The timestamp of the start of the data acquisition of the first exposure.

5.3.3.4. Parallel over-scan

To get hold of the data (as a numpy array) of a parallel over-scan (if present) for a specific exposure
(counting starts at 0) of a specific side of a specific CCD, execute the following command:

>>> parallel_overscan_data = get_parallel_overscan_data(filename, ccd_number, ccd_SIDE, exposure_number)

You can retrieve the parallel over-scan data and header for a specific side of a specific CCD as follows:

PLATO-KUL-PL-MAN-0004 KU Leuven

5.3. Image data | 31

>>> parallel_overscan_cube_data = get_ parallel_overscan_cube_data(filename, ccd_number, ccd_side)
>>> parallel_overscan _cube_header = get_ parallel_overscan_cube_header(filename, ccd_number, ccd_side)

The relevant keywords in the parallel over-scan header are:

Keyword Description

NAXIS1 The number of columns in the parallel over-scan, that are transmitted.

NAXIS2 The number of rows in the parallel over-scan of the CCD, that are transmitted.

NAXIS3 The number of exposures.

CTYPE3 Set to "TIMETAB" to indicate that the 3rd axis will be characterised by tabulated
(time) values. In the older FITS files, this was set to "TIME-TAB" (consistent with the
Greisen & Calabretta papers), but the C code underlying astropy and the traditional
FITS viewer need it to be "TIMETAB" instead.

CUNIT3 Set to "s" to indicate that the time is expressed in s.

PS3_0 Set to "WCS-TAB_<1/2/3/4>_<E/F>" to indicate the the 3rd axis is characterised by the
values in in the table, that is stored in a extension with that name.

PS3_1 Set to "TIME" to indicate that the 3rd axis is characterised by the values in the table
(see PS3_0) in the column with that name.

FOCALLEN The focal length of the telescope [mm].

SITENAME The name of the test site at which the data was acquired.

EXTNAME The extension name, following the convention:

IMAGE_<CCD number (1/2/3/4)>_<CCD side (E/F)>

CCD_ID The CCD number (1/2/3/4).

OBSID The observation identifier.

DATE-OBS The timestamp of the start of the data acquisition of the first exposure.

5.3.3.5. Serial pre-scan

To get hold of the data (as a numpy array) of a serial pre-scan for a specific exposure (counting starts
at 0) of a specific side of a specific CCD, execute the following command:

>>> serial_prescan_data = get_serial_prescan_data(filename, ccd_number, ccd_side, exposure_number)

You can retrieve the serial pre-scan data and header for a specific side of a specific CCD as follows:

>>> serial_prescan_cube_data = get_ serial_prescan _cube_data(filename, ccd_number, ccd_side)
>>> serial_prescan _cube_header = get_ serial_prescan_cube_header(filename, ccd_number, ccd_side)

The relevant keywords in the serial pre-scan header are:

KU Leuven PLATO-KUL-PL-MAN-0004

32 | 5. Data acquisition and storage

Keyword Description

NAXIS1 The number of columns in the serial pre-scan (fixed at 25).

NAXIS2 The number of rows in the serial pre-scan, that are transmitted.

NAXIS3 The number of exposures.

CTYPE3 Set to "TIMETAB" to indicate that the 3rd axis will be characterised by tabulated
(time) values. In the older FITS files, this was set to "TIME-TAB" (consistent with the
Greisen & Calabretta papers), but the C code underlying astropy and the traditional
FITS viewer need it to be "TIMETAB" instead.

CUNIT3 Set to "s" to indicate that the time is expressed in s.

PS3_0 Set to "WCS-TAB_<1/2/3/4>_<E/F>" to indicate the the 3rd axis is characterised by the
values in in the table, that is stored in a extension with that name.

PS3_1 Set to "TIME" to indicate that the 3rd axis is characterised by the values in the table
(see PS3_0) in the column with that name.

SITENAME The name of the test site at which the data was acquired.

EXTNAME The extension name, following the convention:

SPRE_<CCD number (1/2/3/4)>_<CCD side (E/F)>

CCD_ID The CCD number (1/2/3/4).

OBSID The observation identifier.

DATE-OBS The timestamp of the start of the data acquisition of the first exposure.

5.3.3.6. Serial over-scan

To get hold of the data (as a numpy array) of a serial over-scan for a specific exposure (counting starts
at 0) of a specific side of a specific CCD, execute the following command

>>> serial_overscan_data = get_serial_overscan_data(filename, ccd_number, ccd_side, exposure_number)

You can retrieve the serial over-scan data and header for a specific side of a specific CCD as follows:

>>> serial_overscan_cube_data = get_ serial_overscan_cube_data(filename, ccd_number, ccd_side)
>>> serial_overscan _cube_header = get_ serial_overscan_cube_header(filename, ccd_number, ccd_side)

The relevant keywords in the serial over-scan header are:

Keyword Description

NAXIS1 The number of columns in the serial over-scan.

NAXIS2 The number of rows in the serial over-scan, that are transmitted.

NAXIS3 The number of exposures.

PLATO-KUL-PL-MAN-0004 KU Leuven

5.3. Image data | 33

Keyword Description

CTYPE3 Set to "TIMETAB" to indicate that the 3rd axis will be characterised by
tabulated (time) values. In the older FITS files, this was set to "TIME-TAB"
(consistent with the Greisen & Calabretta papers), but the C code
underlying astropy and the traditional FITS viewer need it to be "TIMETAB"
instead.

CUNIT3 Set to "s" to indicate that the time is expressed in s.

PS3_0 Set to "WCS-TAB_<1/2/3/4>_<E/F>" to indicate the the 3rd axis is
characterised by the values in in the table, that is stored in an extension
with that name.

PS3_1 Set to "TIME" to indicate that the 3rd axis is characterised by the values in
the table (see PS3_0) in the column with that name.

SITENAME The name of the test site at which the data was acquired.

EXTNAME The extension name, following the convention:

SOVER_<CCD number (1/2/3/4)>_<CCD side (E/F)>

CCD_ID The CCD number (1/2/3/4).

OBSID The observation identifier.

DATE-OBS The timestamp of the start of the data acquisition of the first exposure.

5.3.3.7. Time

To get hold of the relative time (as a numpy array) in seconds w.r.t. the first exposure (of any side of
any CCD in the file) for the exposures for a specific side of a specific CCD, execute the following
command:

>>> from camtest.analysis.functions.fitsfiles import get_relative_time
>>> relative_time = get_relative_time(filename, ccd_number, ccd_side)
>>> relative_time = get_relative_time(hdu_list_object, ccd_number, ccd_side)

The absolute time (as a numpy array) in seconds since epoch 1958, for the exposures for a specific
side of a specific CCD, can be retrieved as follows:

>>> from camtest.analysis.functions.fitsfiles import get_absolute_time
>>> absolute_time = get_absolute_time(filename, ccd_number, ccd_side)
>>> absolute_time = get_absolute_time(hdu_list_object, ccd_number, ccd_side)

5.3.3.8. Focal-plane coordinates

To convert image pixel coordinates (row, column) for a given side of a given CCD to focal-plane
coorinates (x, y), in mm, execute:

>>> from camtest.analysis.functions.fitsfiles import get_fp_coordinates

KU Leuven PLATO-KUL-PL-MAN-0004

34 | 5. Data acquisition and storage

>>> x, y = get_fp_coordinates(filename, ccd_number, ccd_side, row, column)
>>> x, y = get_fp_coordinates(hdu_list_object, ccd_number, ccd_side, row, column)

5.3.3.9. Astropy WCS objects

It is possible to load the headers into an astropy WCS object, which can be used for coordinate
conversions:

>>> from astropy.io import fits
>>> from astropy.wcs import WCS
>>> with fits.open(<filename>) as hdul:
... header = hdul[<extension name>].header
>>> wcs = WCS(header)

For the older FITS files, you may get this error message (see #1714):

ERROR: ValueError: ERROR 5 in wcsset() at line 2352 of file cextern/wcslib/C/wcs.c: Invalid parameter value.
ERROR 3 in tabset() at line 747 of file cextern/wcslib/C/tab.c: Invalid tabular parameters: Each element of K must
be positive, got 0.

This can be circumvented by correcting the value for the CTYPE3 keyword (before creating the WCS
object):

>>> header["CTYPE3"] = "TIMETAB"

5.4. Telecommand history
The complete telecommand history is not yet saved but can be reconstructed from the setup_id (see
below) and the obsid-table. The obsid-table.txt is a text file located at the root of the data storage
location. The file contains one entry per observation, associating

• the main parameters of the observation, obsid and site

• the time of execution

• the setup_id active at execution time (contains the version number of the plato-test-script on the
operational server)

• The building block name

• All parameter names and values passed to the execute command

The following lines are examples taken from the obsid-table.txt file at CSL:

01108 CSL1 00084 2023-06-07T08:56:22.832+0000 cam_single_cube_int_sync(theta="8.3", phi="12.0", num_cycles="5",
exposure_time="0.2", n_rows="1000", attenuation="0.00413")
01109 CSL1 00084 2023-06-07T08:57:30.003+0000 cam_single_cube_int_sync(theta="8.3", phi="12.0", num_cycles="5",
exposure_time="0.2", n_rows="1000", attenuation="0.00413")
01110 CSL1 00084 2023-06-07T09:02:16.140+0000
check_and_move_relative_user(cslmodel="egse.coordinates.cslmodel.CSLReferenceFrameModel", translation="[0, 0,
0.01]", rotation="[0, 0, 0]", setup="egse.setup.Setup", verbose="True")
01111 CSL1 00084 2023-06-07T09:03:09.426+0000 cam_single_cube_int_sync(theta="8.3", phi="12.0", num_cycles="5",

PLATO-KUL-PL-MAN-0004 KU Leuven

5.4. Telecommand history | 35

exposure_time="0.2", n_rows="1000", attenuation="0.00413")
01112 CSL1 00084 2023-06-07T09:06:40.668+0000
check_and_move_relative_user(cslmodel="egse.coordinates.cslmodel.CSLReferenceFrameModel", translation="[0, 0,
0.005]", rotation="[0, 0, 0]", setup="egse.setup.Setup", verbose="True")
01113 CSL1 00084 2023-06-07T09:08:28.446+0000 cam_single_cube_int_sync(theta="8.3", phi="12.0", num_cycles="5",
exposure_time="0.2", n_rows="1000", attenuation="0.00413")
01114 CSL1 00084 2023-06-07T09:29:58.225+0000 cam_single_cube_int_sync(theta="8.3", phi="12.0", num_cycles="5",
exposure_time="0.2", n_rows="1000", attenuation="0.00413")
01115 CSL1 00084 2023-06-07T09:37:08.043+0000 cam_single_cube_int_sync(theta="8.3", phi="12.0", num_cycles="5",
exposure_time="0.2", n_rows="1000", attenuation="0.00413")
01116 CSL1 00084 2023-06-07T09:40:39.185+0000 cam_single_cube_int_sync(theta="8.3", phi="12.0", num_cycles="5",
exposure_time="0.2", n_rows="1000", attenuation="0.00413")

The obsid-table.txt file is explained in more detail in the Interface Control Document (ICD) [RD-04].

KU Leuven PLATO-KUL-PL-MAN-0004

36 | 5. Data acquisition and storage

https://ivs-kuleuven.github.io/plato-cgse-doc/docs/icd/

6. Configuration and Setups
The complete documentation on the EGSE configuration and on the concept of Setup can be found in
the developer manual.

Setup is the concept we attach to the entity encapsulating the entire set of

• identifiers and configuration items,

• calibration values and calibration files,

necessary to

• describe the test-environment and the item under test, and to

• operate the test.

6.1. Example Setup file
A snippet of a setup file is shown below. It shows the tree structure of the YAML file. At the top level
are the main components: gse (devices), camera (fpa, tou, fee), telemetry, etc. The snippet only shows
part of the Setup. Under the gse branch we have hexapod and stages and many more that are not
shown. All ground equipment that is part of the test setup shall have an entry under the gse branch.
The information that shall go into these entries is device identification, calibration information,
specific device settings, etc.

Everything that is connected to the Camera, i.e. SUT, shall go under the camera branch. This is e.g.
identifiers for the TOU, FEE, FPA, DPU, CCD, …, calibration information, defaults, numbering,
avoidance information, etc.


The gse branch is also used by the process manager to determine which devices are
part of the Setup and for which devices it should present a status LED and a
start/stop button.

The users are allowed to modify or add items and branches to the setup and save a new version of it.
As an example, the stages branch in this example contains calibration values defining metrology of
the rotation and translation stages used to position the light beam at CSL.

Snippet of a Setup file from CSL

NavigableDict
├── site_id: CSL2
├── position: 2
├── gse
│ ├── hexapod
│ │ ├── device: class//egse.hexapod.symetrie.puna.PunaProxy
│ │ ├── device_name: Symetrie Puna Hexapod
│ │ ├── ID: 2B
│ │ ├── time_request_granularity: 0.1
│ │ ├── CID: 603382
│ │ └── label: 172543 - PUNA
│ ├── stages
│ │ ├── ID: 1
│ │ ├── BIG_ROTATION_STAGE_ID: 420-20913

PLATO-KUL-PL-MAN-0004 KU Leuven

6.1. Example Setup file | 37

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/developer-manual.html#_the_setup

│ │ ├── SMALL_ROTATION_STAGE_ID: 409-10661
│ │ ├── TRANSLATION_STAGE_ID: 5101.30-943
│ │ ├── device: class//egse.stages.huber.smc9300.HuberSMC9300Proxy
│ │ ├── device_name: Huber SMC9300 Stages
│ │ ├── calibration
│ │ │ ├── height_collimated_beam: 513.9
│ │ │ ├── offset_phi: 0.4965
│ │ │ ├── offset_alpha: 0.0
│ │ │ ├── offset_delta_x: 96.884
│ │ │ ├── phi_correction_coefficients: [-0.0049, 0.0003]
│ │ │ ├── alpha_correction_coefficients: [0.0856, -0.5]
│ │ │ └── delta_x_correction_coefficients: [-0.1078, 0.2674, -0.0059]
│ │ ├── big_rotation_stage
│ │ │ ├── avoidance: 3.0
│ │ │ ├── hardstop: 179.316
│ │ │ └── default_speed: 15000
│ │ ├── small_rotation_stage
│ │ │ └── default_speed: 15000
│ │ └── translation_stage
│ │ └── default_speed: 15000

...

├── camera
│ ├── TOU
│ │ └── ID: BA-N1-11130000-FM-01
│ ├── fpa
│ │ ├── avoidance
│ │ │ ├── clearance_xy: 2.0
│ │ │ ├── clearance_z: 2.0
│ │ │ ├── vertices_nb: 60
│ │ │ └── vertices_radius: 100.0
│ │ ├── ID: N-FPA-11200000-FM-01
│ │ └── max_offset: 20
│ ├── dpu
│ │ ├── device: class//egse.dpu.DPUProxy
│ │ └── device_name: DPU

...

├── telemetry
│ ├── dictionary: pandas//../../common/telemetry/tm-dictionary-brigand.csv
│ └── separator: ;
├── sensor_calibration
│ └── callendar_van_dusen
│ └── EN60751
│ ├── A: 0.0039083
│ ├── B: -5.775e-07
│ └── C: -4.183e-12
├── history
│ ├── 0: Initial zero Setup for CSL2
│ ├── 1: Copy of CSL setup 97 (last EM setup)
│ ├── 2: Removed TCS block

You can check the version of the Setup with the following command:

>>> print(setup.get_id())
00068

The number printed on your system will be different.

KU Leuven PLATO-KUL-PL-MAN-0004

38 | 6. Configuration and Setups

6.2. Available Setups
Setups will be available in the form of YAML files that are stored in the plato-cgse-conf repository and
are located (probably) at ~/git where the repos are kept.



Do never edit these YAML files directly since they are maintained through changes
on the operational machine. The configuration manager on the egse-server machine
manages these Setups and brings them under configuration control in GitHub
automatically upon submitting a new Setup.

Browsing through the available setups can either be done in Python or via a GUI.

6.2.1. Browsing the Setups in Python

To get a list of the setups that are available in the system, execute the following command (to be
imported from camtest):

>>> list_setups()

This will return a list of (setup identifier, site identifier) pairs, e.g.

('00037', 'CSL2', 'Use v2 of N-FEE sensor calibration for Chimay (#293)', 'brigand')
('00038', 'CSL2', 'Incl. nominal ranges for power consumption checks (#312)', 'brigand')
('00039', 'CSL2', 'Updated N-cam voltages for the AEU PSU (#315)', 'brigand')
('00040', 'CSL2', 'New CSLReferenceFrameModel [csl_model_from_file]', 'brigand')
('00041', 'CSL2', 'Putting back N-cam voltages for the AEU PSU', 'brigand')
('00042', 'CSL2', 'updated stages calibration (beam height and phi correction)', 'brigand')
('00043', 'CSL2', 'Updated AEU voltages + voltage/current protection values (#324)', 'brigand')
('00044', 'CSL2', 'updated translation stage zero position', 'brigand')
('00045', 'CSL2', 'Update AEU configuration according to - NRB NCR-CSL-0036 disposition, email by Yves on
24/05/2023', 'brigand')

The list_setups() command also allows you to filter the results, by using any of the keywords inside the
setups. For instance, to list all the setups related to the STM version of the TOU, tested with the
hexapod No 1 at CSL, you would type

>>> list_setups(camera__ID="achel") ①

① Note that the double underscore “__” is used to navigate the Setup. All parameters passed will be
joined with a logical AND.

list_setups(camera__ID="achel")
('00004', 'CSL2', 'Copy camera and telemetry info for achel from CSL1 setup 38', 'achel')
('00005', 'CSL2', 'Incl. sensor calibration', 'achel')
('00006', 'CSL2', 'Updated hexapod ID', 'achel')
('00007', 'CSL2', 'Updated device name for DAQ6510 (#235)', 'achel')
('00008', 'CSL2', 'Using short sync pulses of 200ms (instead of 150ms)', 'achel')
('00009', 'CSL2', 'Copy camera and telemetry info for achel from CSL1 setup 45', 'achel')
('00010', 'CSL2', 'Incl. MGSE calibration coefficients (#255)', 'achel')
('00011', 'CSL2', 'New CSLReferenceFrameModel [csl_model_from_file]', 'achel')
('00012', 'CSL2', 'Changed offset_phi for validation purposes', 'achel')

PLATO-KUL-PL-MAN-0004 KU Leuven

6.2. Available Setups | 39

('00013', 'CSL2', 'Recalibration of the SMA (#258)', 'achel')
('00014', 'CSL2', 'Updated reference Hartmann positions (#254)', 'achel')
('00015', 'CSL2', 'fixed alpha correction coefficients', 'achel')
('00016', 'CSL2', 'Incl. reference_full_76 (taken from CSL1 setup 46)', 'achel')
('00017', 'CSL2', 'New CSLReferenceFrameModel [csl_model_from_file]', 'achel')
('00018', 'CSL2', 'Copy camera and telemetry info for achel from CSL1 setup 47', 'achel')
('00019', 'CSL2', 'Updated x, y measured positions w.r.t. LDO input (#266)', 'achel')

6.2.2. Using the Setup GUI

To open the GUI to inspect all available setups, type the following command:

$ setup_ui

This will fire up a window as shown in Figure 3. The directory that is mentioned in the window title, is
the one where the available setups are located.

A text field on the left-hand side allows you to filter the setups, similar to the arguments of the
list_setups command from Section 6.2.1. You can navigate through the tree both with the '__' and the
dot notation. For the available setups that pass the filtering, the site and setup identifier will appear in
the drop-down menu, after either hitting the return key in the filter text field or by pressing the
search button next to it.

Figure 3. Screenshot of the GUI to inspect all available setups.

6.3. Loading a Setup
After inspection of the available setups, a specific setup can be loaded, based on the identifier.


Loading a Setup means to load it in the system such that it then becomes the
reference for the system configuration. This means it impacts the GlobalState and
the ConfigurationManager! It is different from getting a copy of a Setup as a

KU Leuven PLATO-KUL-PL-MAN-0004

40 | 6. Configuration and Setups

variable in a python script (see below).

Ideally, the Setup will be loaded one single time at the start of a test phase, with a setup reflecting the
HW present in the test environment. The preferred way to do so is via the setup GUI. That can be
launched via

$ setup_ui

In python:

>>> from camtest import load_setup
>>> setup = load_setup(7)

The above command will load the Setup in the configuration manager and also in the Python console
you used to execute the load_setup() command.



Loading or submitting a Setup will have an effect on the configuration manager. The
Setup is however NOT automatically propagated to all components in the system like
e.g the device drivers. Therefore, always check if you have the right Setup available,
especially in the QtConsole. The Setup is however propagated to all the core services,
sm_cs, pm_cs (TODO), syn_cs.

You can check which Setup is loaded in the core services using the status parameter:

$ cm_cs status
Configuration manager:
 Status: active
 Site ID: CSL2
 No observation running
 Setup loaded: 00068
 Hostname: 192.168.0.163
 Monitoring port: 6001
 Commanding port: 6000
 Service port: 6002
 Listeners: Storage CS

Also the process manager (pm_ui) and the Operator GUI (e.g. csl_ui) indicate which Setup is loaded,
but keep in mind that this is only true for that particular process and is not necessarily propagated to
all processes running in this distributed environment.

6.4. Inspecting, accessing, and modifying a Setup
First, make sure a Setup is already loaded in the system, and that you have a variable attached to a
setup in your Python session. Here we call it setup.

You can get a Setup with the following command

>>> from camtest import get_setup

PLATO-KUL-PL-MAN-0004 KU Leuven

6.4. Inspecting, accessing, and modifying a Setup | 41

>>> setup = get_setup(7)

This will read the content of Setup "00007" for the site you are currently at and assign it to a variable
called setup.


This has no effect on the system configuration (the ConfigurationManager will not
know about it, and the GlobalState won’t be affected).

6.4.1. Content of the setup

To print the entire content of the setup:

>>> print(setup)

The Setups, as well as all of their branches are “navigable dictionaries”. In practice that means that
they have a tree structure, and every part of the tree can be accessed with a simple syntax, using dot
notation (in contrast to using a double underscore (__) when filtering the available Setups).

6.4.2. Inspect a given branch or leaf

You can inspect any branch or leaf of the Setup by navigating the Setup and printing the result:

>>> print(setup.branch.subbranch.leaf)

For instance, printing the hexapod configuration at CSL:

>>> print(setup.gse.hexapod)
NavigableDict
├── device: class//egse.hexapod.symetrie.puna.PunaProxy
├── device_name: Symetrie Puna Hexapod
├── ID: 2B
├── time_request_granularity: 0.1
├── CID: 603382
└── label: 172543 - PUNA

6.4.3. Modify an entry

Any Setup entry can be assigned to with a simple assignment statement.

>>> setup.branch.subbranch.leaf = object

For instance:

>>> setup.camera.fpa.avoidance.clearance_xy = 3

KU Leuven PLATO-KUL-PL-MAN-0004

42 | 6. Configuration and Setups

6.4.4. Add a new entry

When you want to replace a complete sub-branch in the Setup, use a dictionary.

>>> setup.branch.subbranch = {}
>>> setup.branch.subbranch.leaf = object

for instance, to introduce the fpa subbranch in the example file above, one would write:

>>> setup.camera.fpa = {}
>>> setup.camera.fpa.ID = "STM"
>>> setup.camera.fpa.avoidance = {}
>>> setup.camera.fpa.avoidance.clearance_xy = 3

The above can be simplified by adding a predefined dictionary to the Setup:

>>> setup.camera.fpa = {"ID": "STM", "avoidance": {"clearance_xy": 3}}

6.5. Saving a new setup
The setups are stored under configuration control in the plato-cgse-conf repository. The EGSE is taking
care of the interface with that repository when a user is submitting a new setup, with no additional
action necessary than:

>>> response = submit_setup(setup, description="A senseful description of this setup")
>>> if isinstance(response, Setup):
... setup = response
... else:
... print(response)

The new setup receives a unique setup_id, and a new entry is created in the list of setups. The new
Setup is then loaded and made active in the configuration manager. When the Setup is processed by
the system, brought under configuration control and no errors occurred, the new Setup is returned
and will be assigned to the setup variable. In case of a error, the response contains information on the
cause of the Failure and is printed.


Do not directly catch the returned Setup in the setup variable, because you will lose
your modified Setup in case of an error.


the description is mandatory. Setups keep track of their history, so we strongly
encourage to provide concise but accurate descriptions each time this command is
used.


You should not submit nor load a new Setup within the context of an
observation/test. Using submit_setup(…) or load_setup(setup_id) when an
observation is running will result in an error.

PLATO-KUL-PL-MAN-0004 KU Leuven

6.5. Saving a new setup | 43

7. Common-EGSE startup, shutdown, sleep
Intended readers: site-operator, test-operator

7.1. EGSE States
The following states have been defined for the EGSE system, as depicted in Figure 4:

• EGSE OFF: all systems are powered off;

• EGSE INIT: egse-server is booted, user logged in as plato-user;

• EGSE STANDBY: critical housekeeping is being acquired, a sub-set of critical functions is available
(e.g. temperature and safety monitoring of the test-environment and test-article);

• EGSE ON: the system and hardware are ready to receive commands.

Figure 4. Transitions between the EGSE states.

The transitions between these states are all handled by the Process Manager GUI. Under the hood, the
Process Manager queries the setup (from the Configuration Manager) for information on the relevant
processes. A distinction is made between core and devices processes.

7.2. Core & Device Processes
The following processes are considered as Common-EGSE core processes (depicted in the left panel of
Figure 5]) and should always be running:

• the Storage, which is responsible for archiving of housekeeping and image data (see Chapter 5);

• the Configuration Manager, which manages of the configuration and setup of the system (see

KU Leuven PLATO-KUL-PL-MAN-0004

44 | 7. Common-EGSE startup, shutdown, sleep

Chapter 6);

• the Process Manager, which can be used to start device processes and monitor their status
(typically via the corresponding GUI; see further),

• the Logger, which collects all log messages from the different components of the Common-EGSE
and test scripts. The log messages are saved in a log file at a location denoted by the environment
variable PLATO_LOG_FILE_LOCATION.

• the Synoptics Manager, which handles all generic and device independent housekeeping.

These processes are started automatically when the egse-server is booted. They cannot be re-started
nor shut down via the Process Manager GUI; they can only be monitored there.

The device processes (depicted in the middle panel of Figure 5) are the so-called Control Servers that
talk to the hardware Controllers (depicted in the right panel of Figure 5), for commanding and
monitoring the devices.

These processes can be (re-)started and shut down individually from the Process Manager GUI. They
will be running on the same machine as the Process Manager itself, which is the egse-server during
normal operations.

Figure 5. Core and devices processes. The latter are Control Servers that talk to the hardware
Controllers, for commanding and monitoring thedevices.

7.3. Process Manager GUI
A desktop icon will be provided to start the Process Manager GUI. Alternatively, it can be started from
the terminal command line with the following command:

$ pm_ui

This will fire up the GUI shown in Figure 6.

PLATO-KUL-PL-MAN-0004 KU Leuven

7.3. Process Manager GUI | 45

Figure 6. The screenshot of the Process Manager GUI. The colour of the leds (green/orange/red) indicates
what the status is of the core processes and the device processes in the current Setup. Devices processes
can be started (either in operational or in simulator mode) or shut down by pressing the corresponding
play/stop buttons. If a GUI has been implemented for a process, it can be opened (in a separate window)
by pressing the corresponding "UI" button.

On the top left, an overview of the core services will be given. When a (new) Setup is loaded (see
Section 6.3]), the content of the right part (with the device control servers) will be updated. Only the
processes for the devices that are included in the current Setup will be shown.

A led in front of the process name will give you a quick impression of the state of the process. It can
have the following colour for device processes:

• green: the process is running and a connection with the hardware Controller has been
established;

KU Leuven PLATO-KUL-PL-MAN-0004

46 | 7. Common-EGSE startup, shutdown, sleep

• orange: the process is running, but the connection with the hardware Controller could not be
established or was lost;

• red: the process is not yet or no longer running or the process hangs for some undefined reason.

For the core processes, the led should always be green (indicating the process is running). In case one
of them turns red, the corresponding core process is no longer alive, and the system may have to be
re-started. Consult your site-operator in this case.

For the processes for which a "GUI" button is present, a GUI for the corresponding device can be
opened in a separate window by pressing this button. A GUI for any device can be opened only once.

In contrast to the core processes, the device processes can be started from the Process Manager GUI,
either in operational mode (when a hardware Controller is available) or in simulator mode (when no
hardware Controller is available; for testing purposes).

7.3.1. EGSE OFF ⟷ EGSE INIT

When booting the egse-server, the core processes (i.e. Storage, Configuration Manager, Process
Manager, Synoptics Manager, and Logger) will be started automatically. If the Process Manager GUI is
started at this point and no Setup is loaded, the area with the device processes will be empty, and the
five core processes will show a green LED in the GUI.

Note that the Process Manager GUI can only be used to monitor the core processes, not to (re-)start
them. Should any of the LEDs for the core processes turn red (at any point), more detailed inspection
of the system will be needed (and the system may even have to be re-booted).

Any GUI for these processes can be started by pressing the GUI button. Note that although the core
processes are running on the egse-server, GUIs that are launched from the process manager will be
started on your local machine, desktop client.

7.3.2. EGSE INIT ⟷ EGSE STANDBY

After having brought the Common-EGSE into its INIT state, a Setup must be loaded (see Section 6.3).
This comprises (amongst others) all devices that are currently relevant to you. Once a Setup is loaded,
the area with the device processes will be updated in the process manager GUI.

To start the critical device processes, click on the play/stop button for these devices. If all goes well, the
LEDs for these processes will turn green in the GUI.

To shut down these critical processes (to return to INIT mode), the play/stop button of these devices
must be pressed a second time.

Any GUI for these processes can be started by pressing the GUI button. The GUI will start on your local
machine and can only be started once. Starting and stopping a GUI for a device has no effect on the
state of that device.

7.3.3. EGSE STANDBY ⟷ EGSE ON

In STANDBY mode, only the critical processes will be running. The other device processes can be
started by pressing their play/stop button, bringing the Common-EGSE into ON mode. To return to

PLATO-KUL-PL-MAN-0004 KU Leuven

7.3. Process Manager GUI | 47

STANDBY mode, press the buttons again.

Any GUI for these processes can be started by pressing the GUI button.

KU Leuven PLATO-KUL-PL-MAN-0004

48 | 7. Common-EGSE startup, shutdown, sleep

8. Utility functions

8.1. Logging
Errors, warnings, general debugging or any useful information can be logged using the logging
infrastructure. The logging infrastructure will take care that the messages you generate are stored in
the log files associated with the measurement. It also takes care of visualising the messages to the
operator.

Log levels: CRITICAL, ERROR, WARNING, INFO, DEBUG

To log a message in your script:

>>> from camtest import camtest_logger
>>> camtest_logger.info("Starting performance verification test")
2023-06-15 17:10:30,857: IPython: INFO: 1:camtest :Starting performance verification
test

This will print a log message in the REPL and send a log record with the message to the Logger.
Messages for any of the above levels will end up in the Common-EGSE log file, but only messages of
level INFO and above will also be printed in the terminal. So, if you need to check any debugging
messages, make sure you check the log file at $PLATO_LOG_FILE_LOCATION.

8.2. Handling Errors
Inevitably, the code other developers write will generate error and exceptions. Whenever you expect
an exception and you know what to do with it or how to handle it, catch it with the following
construct:

try:
 call_a_function_from_another_dev(...)
except ZeroDivisionError:
 # do something to recover here

If you cannot handle the error, just let it pass to the next level in you script and eventually to the top
building_block.

There is a fully detailed description of exception handling in the on-line Common-EGSE
documentation in the section Exception Handling of the developer manual.

8.3. Coordinate transformations
Figure 7 below shows the schematic overview of the focal plane with the four CCDs. The focal-plane
reference frame (xFP, yFP, zFP) is associated with the focal plane of one camera. Its origin is in the
middle of the four CCDs (indicated by the blue dot in the figure) and the zFP–axis coincides with the
optical axis (pointing towards the reader). The coordinates in the (xFP, yFP) reference frame are
typically expressed in mm.

PLATO-KUL-PL-MAN-0004 KU Leuven

8.1. Logging | 49

https://ivs-kuleuven.github.io/plato-cgse-doc/asciidocs/developer-manual.html#_best_practices_for_error_and_exception_handling

Each of the four CCDs has its own CCD reference frame (xCCD, yCCD) assigned to it (indicated with the
small arrows in the figure). When keeping the readout register of a CCD at the bottom, the origin of
the associated CCD reference frame is at the lower left corner of the CCD. The parallel charge transfer
happens in the negative yCCD direction; the serial charge transfer in the readout register happens in
the negative xCCD direction for the left detector half and in the positive xCCD direction for the right
detector half. The coordinates in the (xCCD, yCCD) reference frame are typically expressed in pixels
(where a pixel measures 18µm in both directions)

• Definition of important coordinate systems

• Field of view position (degrees) to CCD number and pixel coordinates

• CCD number and pixel coordinates to field of view position (degrees)

Figure 7. Schematic overview of the focal plane of one camera, with the four CCDs. The blue dot in the
middle of the CCDs is the origin of the focal-plane reference frame (xFP, yFP) and denotes the location
where the optical axis intersects with the focal-plane. The readout registers of the CCDs are marked in
read and the associated CCD reference frames are indicated with the small arrows.

Alternatively, the position in the focal plane can be expressed in field angles (θ, φ), as shown in Figure
8. The angular distance to the optical axis (marked with a blue dot in the figure) is denoted by angle θ,
whereas φ represents the in-field angle, measured in counter-clockwise direction from the x FP axis.

KU Leuven PLATO-KUL-PL-MAN-0004

50 | 8. Utility functions

Figure 8. Definition of the field angles θ and φ. The former is the angular distance to the optical axis
(marked by means of the blue dot), the latter is the in-field angle, measured in the counter-clockwise
direction from the xFP axis.

The following coordinate conversions can be imported from egse.coordinates:

row, column, ccd_code = focal_plane_to_ccd_coordinates(x_fp, y_fp)

• Identifies the CCD on which the given focal-plane coordinates (x_fp,y_fp) are located, and returns
the pixel coordinates (row, column) in the corresponding CCD reference frame and the CCD code
(ccd_code).

◦ The input focal-plane coordinates (x_fp, y_fp) should be specified in mm.

◦ The output pixels coordinates (row, column) are given in pixels.

◦ The output CCD code ccd_code should be 1/2/3/4 (as in Figure 7).

◦ If the given focal-plane coordinates do not fall on any of the CCDs, (None, None, None) is
returned.

theta, phi = focal_plane_coordinates_to_angles(x_fp, y_fp)

• Converts the given focal-plane coordinates (x_fp, y_fp) to field angles (theta, phi).

◦ The input focal-plane coordinates (x_fp, y_fp) should be specified in mm.

◦ The output field angles (theta, phi) are given in degrees.

x_fp, y_fp = ccd_to_focal_plane_coordinates(row, column, ccd_code)

PLATO-KUL-PL-MAN-0004 KU Leuven

8.3. Coordinate transformations | 51

• Converts the given pixel coordinates (row, column) in the reference frame of the CCD with the given
code ccd_code to focal-plane coordinates (x_fp, y_fp).

◦ The input pixel coordinates (row, column) should be given in pixels.

◦ The input CCD code ccd_code should be 1/2/3/4 (as in Figure 7).

◦ The output focal-plane coordinates (theta, phi) are given in mm.

x_fp, y_fp = angles_to_focal_plane_coordinates(theta, phi)

• Converts the given field angles (theta, phi) to focal-plane coordinates (x_fp, y_fp).

◦ The input field angles (theta, phi) should be given in degrees.

◦ The output focal-plane coordinates (x_fp, y_fp) are given in mm.

x_distorted, y_distorted = undistorted_to_distorted_focal_plane_coordinates(
 x_distorted, y_distorted, distortion_coefficients, focal_length)

• Converts the given undistorted focal-plane coordinates (x_undistorted, y_undistorted) to distorted
focal-plane coordinates (x_distorted, y_distorted), based on the given distortion
coefficients(distortion_coefficients) and focal length (focal_length).

◦ The input undistorted focal-plane coordinates (x_undistorted, y_undistorted) should be given
in mm.

◦ The input distortion coefficients (distortion_coefficients) should be an array [k1, k2, k3] with
the coefficients of the distortion polynomial.

◦ The input focal length (focal_length) should be given in mm.

◦ The output distorted focal-plane coordinates (x_distorted, y_distorted) should be given in mm.

KU Leuven PLATO-KUL-PL-MAN-0004

52 | 8. Utility functions

9. When a new camera arrives
This chapter describes the different actions to be taken when a new camera arrives at either CSL or
one of the test houses. The actions are different for CSL with respect to the test houses, so this will be
described in separated sections.

9.1. Setup
The setup file is a configuration file, part of the CGSE, describing all components and calibrations of
the actual test article, test equipment, and test environment. In addition to holding some information
like the ensemble of reference frame definitions (in CSL) or the history, it consists of two main
components: a first describing the GSE and gathering the information over the test environment
(devices control and calibration, temperature sensors, …), and a second describing the camera, i.e.
gathering all the information over the description and calibration of the test articles (TOU, FPA,
FEE…).

The setup is a YAML file, i.e. a hierarchical “dictionary” (in the python sense of the word). Items can be
referred to by a [key, value] pair, where the key refers to their location in the hierarchy and consists of
the full path to that location, e.g. setup.gse.stages.calibration.phi_correction_coefficients: [-0.0014,
-0.003]. The value can be a built-in type (int, float, str, …), a serialized object, a list, or the path to
another calibration file. A more detailed explanation of the Setup is in Chapter 6.

The setup is under configuration control in the GitHub repository plato-cgse-conf and new setup
versions are created exclusively on the server or client machine of the cleanroom for which the setup
is intended.

9.2. Purpose
This chapter describes the values susceptible to change when the components of a new camera are
integrated on a test setup in CSL. The goal of this chapter is to provide a step-by-step procedure for the
creation of the new setup, including the source of information for every item to update.

At the time of writing, several setups do already exist that include the calibration of the GSE
components on both test setups in CSL (“CSL1” and “CSL2”). So this document assumes their pre-
existence rather than creating them from scratch every time again.

Setups exist and are maintained in different configuration directories (and in GitHub) for every test
environment, so every test chamber has its own numbering for the setups
SETUP_<SITE>_<NUMBER>_<date>_<time>, e.g. SETUP_CSL1_00065_230407_091711.yaml (the date and time are
automatically included at creation time). The <NUMBER> is sequentially incremented for each new
version of a setup and is not reset for each new camera.


In this chapter, the setup.components.to_update will be marked in bold, the
setup.components that should not need any update are written in italics.

PLATO-KUL-PL-MAN-0004 KU Leuven

9.1. Setup | 53

9.3. Useful Information
• Test status of each of the cameras and/or its components: https://s2e2.cosmos.esa.int/confluence/

display/PCOT/Test+Status

• CAM Configuration connects the camera id with the identifiers of its components:
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?pageId=171639593

• CAM Logistics Control keeps track of the shipments from CSL to the THs:
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?spaceKey=SCIPLM&
title=CAM+Logistics+Control

• TOU Logistics Control keeps track of the shipments from TAS to LDO: https://s2e2.cosmos.esa.int/
confluence/pages/viewpage.action?spaceKey=SCIPLM&title=TOU+Logistics+Control

9.4. A new camera arrives at CSL

9.4.1. Necessary Inputs

This is a list of the input data and files necessary anytime during the process described below, so
maybe first check all of them are at hand:

• The latest version of AD01, freshly pulled from Eclipse

• The metrology excel file from the FPA

• The metrology excel file from the TOU

• The raw data from the TOU

• The laser tracker with the input CSLReferenceFrameModel from CSL

• The default FPGA parameters file (FPGA_Configuration file.ini)

• The sensor calibration parameters file (HK_Calibrations_File.ini)

• The FEE register map calibration file (the same for all (P)FM cameras, but different for EM)

• The HK map calibration file (the same for all (P)FM cameras, but different for EM)

• Telemetry dictionary file (CSV file in plato-cgse-conf)

• The acceptable limits for the CCD offsets & readout noise (analog_chain_limits_tvac and
_ambient.yaml)

• The acceptable limits for the FEE currents and powers (sft_limits_fee_hk_<camera>.xlsx)

The references for some of those documents can be found in Section 9.7 or in the latest weekly
minutes from CSL.

9.4.2. Baseline

I don’t understand what you mean here with baseline? I think this should be more elaborate like what
information goes into the GitHub ticket, the ticket basically describes the steps to take, and how to do
that by providing the Python code that needs to be executed to ingest the proper information into the
Setup. There is also a lot of other information that needs to go in, like N-FEE sensor calibration, the

KU Leuven PLATO-KUL-PL-MAN-0004

54 | 9. When a new camera arrives

https://s2e2.cosmos.esa.int/confluence/display/PCOT/Test+Status
https://s2e2.cosmos.esa.int/confluence/display/PCOT/Test+Status
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?pageId=171639593
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?spaceKey=SCIPLM&title=CAM+Logistics+Control
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?spaceKey=SCIPLM&title=CAM+Logistics+Control
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?spaceKey=SCIPLM&title=TOU+Logistics+Control
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?spaceKey=SCIPLM&title=TOU+Logistics+Control

new Register Map definition, the HK packet definition, etc.

1. Open a GitHub ticket on the plato-cgse-conf repository, using the "Configuration for new camera
template".

2. Create a new setup, starting from the last setup on the given test-chamber (e.g. CSL1).

3. Create a GitHub ticket for the inclusion of the CSL metrology (xls) file on the CSL server (cgse-conf)

4. Reduce the raw data from LDO

5. Create a GitHub ticket for the inclusion of the LDO-data-reduction (fits) file on the CSL server
(data/reduced)

9.4.3. Updating the GSE section

There are only a few items to update in this section, as the information doesn’t change with the
camera.

setup.gse.hexapod

There are 2 hexapods per test room in CSL → check the proper hexapod ID & information
with CSL (source TBD).

There are 4 hexapods : 1A, 1B, 2A, 2B, with 1, 2 referring to the test room CSL1 or CSL2.

The setup.gse.hexapod.ID, CID and label are updated together (TBC).

setup.gse.stages

PLATO-KUL-PL-MAN-0004 KU Leuven

9.4. A new camera arrives at CSL | 55

Bound to the room. Should not need any update.

The section setup.gse.stages.calibration comes from

• CSL1 : PLATO-PL-CSL-RP-0031_3.0_R1_CalibrationReport

• CSL2 : PLATO-PL-CSL-RP-0032_2.1_R2_CalibrationReport

The offsets are simple scalar values describing the value at field angles [boresight,
azimuth] = [0,0]

The correction coefficients are polymonials, expressed as [order_0_par, order_1_par, …].
The parameters are expressed in the equations presented for each of the stages:

The origin of the values

Correction of the azimuth φ

setup.gse.stages.phi_correction_coefficients = [order0, order1] → from
equation 4-4 in section "calculation of correction angle φ versus FOV θ"

Mirror orientation α

setup.gse.stages.alpha_correction_coefficients = [order0, order1] → from
equation 4-1 in section “Definition of Mirror orientation”

setup.gse.stages.calibration.offset_alpha = value → this value is 0. = the
difference between the “calculated mirror orientation” for FoV θ in Table 4-8 and
alpha_correction_coefficients[0]

Mirror position x

setup.gse.stages.delta_x_correction_coefficients = [order0, order1, order2] →
from equation 4-3 in section “Definition of Mirror position”

setup.gse.stages.calibration.offset_delta_x = value → This value is listed under
equation 4-3

setup.gse.stages.calibration.offset_phi

This must be updated from the z-component of the rotation vector expressing TOU_MEC
in GL_ISO.

This is only made available to us after alignment of the camera on the CSL setup.

It can then be found in the xls sheet gathering the laser-tracker metrology from CSL,
provided as input to define the CSLReferenceFrame (see Section 9.6.2).

setup.gse.aeu

KU Leuven PLATO-KUL-PL-MAN-0004

56 | 9. When a new camera arrives

Bound to the room. Should not need any update

Original info from TBD

setup.gse.ogse

Bound to the room. Should not need any update

Original info from TBD

setup.gse.DAQ6510

Bound to the room. Should not need any update (TBC)

Original info from TBD

This still needs to be checked as the sensors need to be connected in the same way for all
cameras. Check the sensor / channel connection.

9.4.4. Updating the Camera section

Camera identifiers

CSL UI → "Configuration" tab → Sect. "2 - Include information in setup" → "Camera identifiers"

• Set the camera_id (choose from drop-down menu)

• Set the camera_serial_number (from AD01)

• Set the tou_id (from AD01; e.g. TOU-11100000-FM-01)

• Set the fee_id (from AD01)

• Set the fpa_id (from AD01; e.g. FPA-11200000-FM-SN103)

• Complete the description (should contain camera name + issue number)

• Press "run"

• Check the proposed changes → Agree to submit setup

setup.camera.TOU.ID

See "Camera identifiers" above

setup.camera.fpa

• setup.fpa.ID: See "Camera identifiers" above

• setup.fpa.avoidance parameters don’t need any update

setup.camera.dpu

No update needed.

setup.camera.fee

PLATO-KUL-PL-MAN-0004 KU Leuven

9.4. A new camera arrives at CSL | 57

setup.camera.fee.type: N-FEE or F-FEE

setup.camera.fee.ID: See "Camera identifiers" above

setup.camera.fee.calibration:

1. Pull the “*HK_Calibrations_File.ini” from the FEE / Analogue chain EIDP

2. CSL UI: "Configuration" tab → Sect. "1 - Create configuration / calibration files" → "N-
FEE sensor calibration":

a. Set the camera_id (choose from drop-down menu)

b. Load the HK calibration file from step 1

c. Fill out the handling jigs (taken from AD01)

d. Press "run"

3. Submit the file to the plato-cgse-conf GitHub repository (in common/n-fee)

4. CSL UI: "Configuration" tab → Sect. "2 - Include information in setup" → "N-FEE sensor
calibration":

a. Set the camera_id (choose from drop-down menu)

b. Load the N-FEE calibration file created in steps 2 - 3

c. Complete the description (should contain camera name + issue number)

d. Press "run"

e. Check the proposed changes → Agree to submit setup

setup.camera.fee.register_map & setup.camera.fee.hk_map

1. Make a copy of the register map and HK map YAML files (in common/n-fee) of a
previous (P)FM

2. Replace the beer name in the filenames

3. Submit the files to the plato-cgse-conf GitHub repository (in common/n-fee)

4. CSL UI: "Configuration" tab → Sect. "2 - Include information in setup" → "N-FEE
register & HK map":

a. Set the camera_id (choose from drop-down menu)

b. Load the register and HK maps from steps 1 - 3

c. Complete the description (should contain camera name + issue number)

d. Press "run"

e. Check the proposed changes → Agree to submit setup

setup.camera.fee.fpga_defaults

KU Leuven PLATO-KUL-PL-MAN-0004

58 | 9. When a new camera arrives

1. Pull the “*FPGA_Configuration file.ini” from the FEE / Analogue chain EIDP

2. CSL UI: "Configuration" tab → Sect. "1 - Create configuration / calibration files" → "N-
FEE FPGA defaults":

a. Set the camera_id (choose from drop-down menu)

b. Load the FPGA defaults file from step 1

c. Press "run"

3. Submit the file to the plato-cgse-conf GitHub repository (in common/n-fee)

4. CSL UI: "Configuration" tab → Sect. "2 - Include information in setup" → "FEE FPGA
defaults":

a. Set the camera_id (choose from drop-down menu)

b. Load the FPGA defaults file created in steps 2 - 3

c. Complete the description (should contain camera name + issue number)

d. Press "run"

e. Check the proposed changes → Agree to submit setup

setup.camera.fee.ccd_numbering, ccd_sides, sensor_sel

no update

setup.camera.fee.power_consumption

PLATO-KUL-PL-MAN-0004 KU Leuven

9.4. A new camera arrives at CSL | 59

A. Prepare the calibration file

1. Identify the appropriate versions of the MSSL-0058 short functional test reports
for both the ambient and tvac cases. For instance, the ambient case might be
labelled “before shipping”. Many versions of MSSL-0058 exist for every camera, so
have your selection validated by ESA before anything else.

2. Find an existing calibration file in the cgse-conf repo, in common/n-fee. For
instance sft_limits_fee_hk_duvel_v01.xlsx

3. Copy it to a new file bearing the name of the new camera, to make sure to respect
its format in the new version

4. (Manually) edit the cover page and the values in the ‘ambient’ and ‘tvac’ sheets
according to the MSSL-0058 reports (table numbers are indicative; in case of
deviation, apply common-sense; powers are computed from voltages and
currents)

i. Voltages (table 14-8). The tolerances on the voltages are set to 100%.

ii. Currents ON mode (table 14-9)

iii. Currents STANDBY mode (table 14-14)

iv. Currents in FULL_IMAGE mode READOUT (table 14-16)

v. Currents in FULL_IMAGE mode INTEGRATION (table 14-17)

B. Update the setup accordingly

1. CSL UI: “Configuration” tab → Sect. 2 (SFT) I and P limits”

2. version (mandaroty) : the version of your calibration file (integer)

3. confdir (optional) : can be left blank : the directory where the calibration files will
be found. The default is taken from the env. variable
PLAT0_CONF_DATA_LOCATION

4. description (optional) : if left blank, replaced with “Incl. power consumption
limits for <camera>. Ref. file version <version>”

The calibration file is selected based on the camera.ID, which is determined from the
current setup (setup.camera.ID), so prior to this, make sure to start after loading a
preliminary setup for the new camera.

setup.camera.ccd.limits

KU Leuven PLATO-KUL-PL-MAN-0004

60 | 9. When a new camera arrives

A. Calibration file received by email from Sami Niemi, and placed on
$PLAT0_CONF_DATA_LOCATION/common/ccd. Two independent files exist for ambient and
tvac. Both have the same format and contain the information for all cameras at once.
The filenames are “analogue_chain_limits_<temp>_<version>.yaml”, where <temp> is
either ‘ambient’ or ‘tvac’ and <version> is ‘v??’ with ?? = the version number, e.g. 04.

Verify that the file received from Sami has the right version number (= the ‘next one’)
and that the temperatures are well formulated as “ambient” and “tvac” (e.g. not
“cold”)

B. Update the setup accordingly:

1. CSL UI: “Configuration” tab → Sect. 2 (SFT) CCD offsets and readout noise”

2. version (mandaroty) : the version of your calibration file (integer)

3. temp (mandatory) : either ‘ambient’ or ‘tvac’

4. confdir (optional) : can be left blank : the directory where the calibration files will
be found. The default is taken from the env. variable
PLAT0_CONF_DATA_LOCATION

5. description (optional) : if left blank, replaced with “Incl. power consumption
limits for <camera>. Ref. file version <version>”

The calibration file is selected based on the camera.ID, which is determined from the
current setup (setup.camera.ID), so prior to this, make sure to start after loading a
preliminary setup for the new camera.

setup.camera.ID, setup.camera.serial_number

See "Camera identifiers" above

setup.camera.ccd

PLATO-KUL-PL-MAN-0004 KU Leuven

9.4. A new camera arrives at CSL | 61

setup.camera.orgin_offset_x, origin_offset_y and orientation: must be updated from the
FPA metrology excel sheet.

To compute the new values from plato-test-scripts, run the ipython notebook
scripts/ccd_info.ipynb.

Alternative:

1. Input data: FPA metrology excel sheet. PL-ALN-CSL-0050 “coordinates of the corner
pixels”)

2. Script camtest.analysis.analysis_fpa_eidp_corners.py

a. Ingest the coordinates according to the format existing for previous cameras

b. Run the code snippet for the new camera.

3. CSL UI: "Configuration" tab → Sect. "2 - Include information in setup" → "CCD
positions":

a. Set the camera_id (choose from drop-down menu)

b. Load the FPA metrology spreadsheet from step 1

c. Complete the description (should contain camera name + issue number)

d. Press "run"

e. Check the proposed changes to the setup → Agree to submit the setup

setup.camera.fov: TOU metrology excel sheet

setup.camera.fov.focal_length: update from LDO TOU metrology excel sheet.

setup.camera.fov.distortion_coefficients: update from LDO TOU metrology excel sheet.

setup.camera.fov.inverse_distortion_coeffcients: computed from the distortion
coefficients

1. Input data: TOU metrology excel sheet

2. To compute : from the plato-test-scripts, run the ipython notebook
scripts/field_distortion.ipynb

3. CSL UI: "Configuration" tab → Sect. "2 - Include information in setup" → "Field
distortion & Focal length":

a. Set the camera_id (choose from drop-down menu)

b. Load the TOU metrology spreadsheet from step 1

c. Complete the description (should contain camera name + issue number)

d. Press "run"

e. Check the proposed changes to the setup → Agree to submit the setup

setup.camera.fov.tau: no update. If needed, it will be updated after recalibration.

KU Leuven PLATO-KUL-PL-MAN-0004

62 | 9. When a new camera arrives

9.4.5. Remaining Setup sections

setup.csl_model

is automatically updated during operations. This demands a laser-tracker metrology
input file from CSL.

See Section 9.6.1 for details.

setup.fov_positions.reference_full_40.x & y

To be updated from the LDO metrology, for use with ‘use_angles = False’ in the
verification of the LDO metrology.

They can be found in the columns presenting the TOU_MEC / MRF X & Y coordinates of
the LDO measurements at ambient, in their metrology deliverables document (columns x
and y in PL-ALN-CSL-0520 in sheet “TOU” of the TOU/LDO “RP” document; see Section
9.7).

setup.telemetry

1. Make a copy of the telemetry dictionary of the previous camera (CSV file)

2. Replace the beer name in the filename

3. Submit the files to the plato-cgse-conf GitHub repository (in common/telemetry)

4. CSL UI: "Configuration" tab → Sect. "2 - Include information in setup" → "Telemetry"

a. Set the camera_id (choose from drop-down menu)

b. Load the file from step 1

c. Complete the description (should contain camera name + issue number)

d. Press "run"

e. Check the proposed changes → Agree to submit the setup

setup.sensor_calibration

No update needed.

9.5. A new camera arrives at the test houses
TBW

9.6. Additional preparation steps

9.6.1. Reduce the raw LDO data

The raw data from LDO’s measurements at ambient must be reduced and the results formatted as if
acquired in CSL to allow for easy comparisons by the CSL operators.

The raw data is attached to a document, whose reference can be found in the CSL weekly meeting
(updated there). See also Section 9.7.

PLATO-KUL-PL-MAN-0004 KU Leuven

9.5. A new camera arrives at the test houses | 63

1. Verify the next obsid that is free for LDO (see table in Section XXXXX).

2. Reduce the LDO data

3. Compare the results (ellipse-sizes) with those from LDO (presented in their metrology excel sheet)

4. Copy the resulting fits file on the CSL server, in the /data/reduced/ directory (TBC)

So far the raw data is reduced manually, due to various issues and changes in the measurements and
in the formats of the LDO deliveries.

9.6.2. CSLReferenceFrame

The CSL operator GUI needs a laser-tracker metrology file from CSL. That is an excel file with a “data”
sheet that is read by the task in the GUI.

1. The file is communicated to KUL after alignment of the camera on the setup. It doesn’t need any
modification.

2. It must be pushed to the plato-cgse-conf repository in the 'data/CSL[12]/conf' directory and after
that the repository must be pulled on both the server and client machines.

NB: The name of the file will be PLATO-CSL-PL-
RP_00YY_vX.3_CSL_RFModel_FMX_CAMID_ROT?_ISO??.xlsx where YY is a document number, X is the
FM-TOU-number (e.g. FM2 is Chimay), and the single and double question marks point to the rotation
and isostatic tables used. The filename is not critical, it is a free parameter in the arguments panel of
the CSL operator GUI.

9.7. Reference Information
Camera configuration & ABCL:

• Most information can be found in AD01: PLATO-INAF-PL-LI-0071 : PFM_FM_FS_CAM_ABCL

• Links between CAM ID, TOU, FPA & metrology reports are in the minutes of the CSL weekly (the
table is permanent and updated in there)

CAM ID : from PLATO-CSL-PL-PR-0019 version 1.1

TOU is the usual reference FM#n.

• The serial number can be found in AD01 or in Confluence: https://s2e2.cosmos.esa.int/confluence/
pages/viewpage.action?pageId=171639593

• It has the following structure: N?-CAM-1?100000-FM-## where ? runs from 1 to 4 and denotes the
camera-group, whereas ## runs from 01 to 06 and marks the camera number within the group.

DEAD : from AD01 (original reference: PTO-EST-PL-TN-1369 version 1.0)

Metrology

• For the TOU, metrology reports start with PLATO-INAF-PL-RP and can be found in the TOU EIDP, in
Eclipse or /STER/platodata/EIDP/{camera}/TOU/… /12-Test Reports/

KU Leuven PLATO-KUL-PL-MAN-0004

64 | 9. When a new camera arrives

https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?pageId=171639593
https://s2e2.cosmos.esa.int/confluence/pages/viewpage.action?pageId=171639593

• For the TOU, the raw data can be found in documents starting with PLATO-INAF-PL-TR, and are in
the EIDP or delta_EIDP

• For the FPA, metrology reports start with PTO-EST-PL-RP and can be found directly in Eclipse

TODO: link the TOU & FPA Ref. to their EIDP in Eclipse ?

To be allocated to the right camera:

• PTO-EST-PL-REP-1551 - PLATO FM7 FPA Metrology Summary

• PTO-EST-PL-REP-1552 - PLATO FM8 FPA Metrology Summary

• PTO-EST-PL-REP-1553 - PLATO FM10 FPA Metrology Summary

PLATO-KUL-PL-MAN-0004 KU Leuven

9.7. Reference Information | 65

10. Switching ON/OFF the Camera
Before you can start any operations or tests, you will need to switch on the Camera N-CAM following a
dedicated Camera Switch ON procedure. Also for switching off the Camera you will need to follow a
series of steps to be executed in the correct order.

The steps for Camera Switch ON are the following:

1. Send commands to the AEU to power on the camera and enable the sync signals → Camera is now
in ON mode

2. Send the FPGA defaults to the N-FEE

3. Go to STANDBY mode

4. Go to DUMP mode, external sync

The steps for the Camera Switch OFF:

1. Go to STANDBY mode

2. Go to ON mode

3. Send commands to the AEU to disable the sync signals and power off the camera

Note that, although the individual steps all exist as tasks in the Operator GUI, the procedure to switch
OFF and ON the Camera should be used from the Operator GUI: Camera TAB > 4 — Camera > Switch ON
/ Switch OFF. These tasks step through the different steps in the procedure and perform additional
checks like voltages/currents/power, N-FEE mode etc. prompting the user for confirmation at each
step.

Figure 9. Screenshot of the Operator Task GUI where the Camera Switch On and Switch OFF have been
framed.

10.1. Detailed description of Camera Switch ON
This section describes what is done during the Camera Switch ON procedure, i.e. by running the task
'Camera Switch ON' in the Operator GUI. Although the individual steps are explained in detail, you

KU Leuven PLATO-KUL-PL-MAN-0004

66 | 10. Switching ON/OFF the Camera

should still run the Camera Switch ON task instead of each step separately. Only use the individual
commanding when in a contingency.

The AEU Test EGSE shall be on StandBy mode before we start. You can check that in the AEU GUI
where the Stand-by LED in the left panel (EGSE mode) shall be green.



Before powering on the AEU, stop all AEU related control servers. When you power
on the AEU, the LEDs on the front panel start blinking (you won’t see anything in the
AEU GUI since the control servers are not running). This blinking takes about three
minutes and you shall NOT start the AEU control servers before the LEDs stop
blinking.

Step 1. Send commands to the AEU to power on the camera and enable the sync signals

The AEU Test EGSE is now ready to power the camera and enable the synchronisation. This is the first
step in the procedure. The individual task is: Task GUI > Camera TAB > 2 — AEU > Switch ON. From the
Python REPL[1], you can execute these commands:

>>> from camtest import start_observation, end_observation ①
>>> from camtest.commanding import aeu

>>> start_observation("AEU N-CAM Switch ON")
>>> aeu.n_cam_swon()
>>> aeu.n_cam_sync_enable(image_cycle_time=25, svm_nom=1, svm_red=0)
>>> end_observation()

① import statements will be given only once, they are normally automatically loaded from the
startup.py file.

The camera shall now be in ON mode (check this in the DPU GUI) and the AEU GUI should have the
following LEDs turned green: 'Functional check & TVAC', 'N-CAM', all power lines

Figure 10. The state of the AEU Test EGSE after a AEU N-CAM Switch ON

At this point, the Camera Switch ON procedure will perform a few additional tasks that are not done
when you execute the individual steps:

1. The AEU (cRIO & PSU) HK sampling frequency will be increased to 4Hz for the time of the Camera
Switch ON procedure. The frequency can be changed in the arguments panel of the task GUI.

PLATO-KUL-PL-MAN-0004 KU Leuven

10.1. Detailed description of Camera Switch ON | 67

2. The N-FEE register map is loaded by the DPU Processor. This will synchronise the DPU Processor
internal state with the N-FEE state. This step requires that the DPU CS was started and is running.

3. The AEU cRIO voltages and currents will be printed in an overview table and checked against their
limits. The operator is asked to confirm or abort.

Step 2. Send the FPGA defaults to the N-FEE


This step shall be skipped for the EM camera as there are not updated FPGA defaults
defined for EM.

Each camera N-FEE requires a update of a number of FPGA parameters in the register map. That is
what we call the FPGA defaults. Please note that these settings are camera specific and influence the
proper readout of the CCDs, so it’s important that this step is executed at the right time in the
procedure. The individual task is: Task GUI > Camera TAB > 3 — N-FEE > Set FPGA defaults. From the
REPL you can execute these commands:

>>> from camtest.commanding import dpu
>>> execute(dpu.n_fee_set_fpga_defaults)

The user will be prompted to confirm the values have been correctly applied in the N-FEE FPGA.

The FPGA defaults are read from the current Setup. In the Setup there is an entry
setup.camera.fee.fpga_defaults that loads the YAML file with the correct values for the camera. The
values are expressed as registers (32bit values) and not as individual parameters. You can inspect the
values as follows:

>>> setup.camera.fee.fpga_defaults

NavigableDict
├── reg_0_config: 119D0000
├── reg_1_config: 0
├── reg_2_config: E40FA36B
├── reg_3_config: 8F60000
├── reg_4_config: 186A7D8C
├── reg_5_config: 3EA030D4
├── reg_6_config: 0
├── reg_7_config: 0
├── reg_8_config: 0
├── reg_9_config: 0
├── reg_10_config: 0
├── reg_11_config: 0
├── reg_12_config: 0
├── reg_13_config: 0
├── reg_14_config: 0
├── reg_15_config: 0
├── reg_16_config: 0
├── reg_17_config: 0
├── reg_18_config: 7FE7EF16
├── reg_19_config: FE7EE7FE
├── reg_20_config: 19BCD
├── reg_21_config: 5E5000
├── reg_22_config: 4241AE9
├── reg_23_config: 0
├── reg_24_config: 0
├── reg_25_config: 6400000
└── reg_26_config: 3E807D0

KU Leuven PLATO-KUL-PL-MAN-0004

68 | 10. Switching ON/OFF the Camera

>>> setup.camera.fee.get_raw_value('fpga_defaults')
'yaml//../../common/n-fee/nfee_fpga_defaults_brigand.yaml'

Step 3. Go to STANDBY mode

Now, the camera will be brought into STANDBY mode. This means the CCDs will be powered and start
accumulating flux. The individual task is: Task GUI > Camera TAB > 3 — N-FEE > To STANDBY mode. From
the REPL, the command is:

>>> execute(dpu.n_cam_to_standby_mode)

In the Camera Switch ON procedure, the user will be prompted to confirm the N-FEE is actually in
STANDBY mode.

Again, the procedure will check the AEU cRIO voltages and currents and print an overview table.
Please note that the configured limits are different for ON mode, STANDBY mode and also DUMP
mode. At each step the procedure will perform this check. The operator is asked to confirm or abort.

Step 4. Go to DUMP mode, external sync

The last step in the switch-on procedure is to bring the camera in DUMP mode (external sync). As
explained in Chapter 12, DUMP mode is not a genuine FEE operation mode, but is defined in the CGSE
as a state in which the N-FEE is in FULL IMAGE mode in which the dump gate is kept high,
continuously resetting the readout register. No data is acquired or send to the DPU. The indicidual
task is: Task GUI > Camera TAB > 3 — N-FEE > To DUMP mode. The command you can use in the REPL is:

>>> execute(dpu.n_cam_to_dump_mode)

The user will then be prompted to confirm that the N-FEE is actually in DUMP mode. After
confirmation, the AEU cRIO voltages and currents will be checked against their limits and printed in
an overview table asking the user for another confirmation.

One last step that is part of the Camera Switch ON procedure is to take a series of single images
without the light source on. That is, it will be full frame darks with the dump gate enabled.

>>> dpu.n_cam_acquire_and_dump(num_cycles=5, row_start=0, row_end=4539, rows_final_dump=0, ccd_order=[1, 2, 3, 4],
ccd_side="BOTH")

Finally, the AEU cRIO and PSU HK frequency is reset to their default values from the Settings, i.e.
HK_DELAY.

This concludes the Camera Switch ON procedure as it is currently implemented and required to
execute. The camera will be in DUMP mode after this switch-on which is the starting state for all the
TVAC tests that will be executed.

PLATO-KUL-PL-MAN-0004 KU Leuven

10.1. Detailed description of Camera Switch ON | 69

10.2. Detailed description of Camera Switch OFF
Switching OFF the camera is much simpler and doesn’t require specific checks. The N-FEE should
normally be in DUMP mode when you start this switch-off and is brought first to STANDBY mode, then
to ON mode. Each of these steps require confirmation from the operator. Finally, the AEU Switch OFF
is executed which disables the sync signals and powers off the camera. The individual tasks are Camera
TAB > 3 — N-FEE > To STANDBY mode, Camera TAB > 3 — N-FEE > To ON mode, and Camera TAB > 2 — AEU >
Switch OFF. From the REPL, the following commands accomplish the same result:

>>> start_observation("AEU N-CAM Switch OFF")
>>> dpu.n_cam_to_standby_mode()
>>> dpu.n_cam_to_on_mode()
>>> aeu.n_cam_sync_disable()
>>> aeu.n_cam_swoff()
>>> end_observation()


As with the Camera Switch ON procedure, also for the switch-off, you shall use the
Camera Switch OFF task from the Task GUI > Camera TAB > 4 — Camera > Switch OFF
instead of using the individual tasks or commands.

10.3. Analysis of the Short Function Test (SFT)
Every time you execute the Camera Switch ON procedure, the task will perform a short functional test
using the acquire_and_dump command as shown below. This is a full-frame measurement of all four
CCDs and both sides.

>>> dpu.n_cam_acquire_and_dump(num_cycles=5, row_start=0, row_end=4539,
 rows_final_dump=0, ccd_order=[1, 2, 3, 4],
 ccd_side="BOTH")

In the Operator Task GUI, Camera TAB (see Figure 9), there is a task button to execute the SFT analysis.
In the arguments panel, you should provide the obsid of the Camera Switch ON as an integer, i.e. only
the test id, not the site id. The data_dir is the parent folder where the observations are stored and the
output_dir is where the result of the analysis will be saved.

KU Leuven PLATO-KUL-PL-MAN-0004

70 | 10. Switching ON/OFF the Camera

Figure 11. Input arguments panel that will appear when selecting the SFT Analysis task button in the
Operator Task GUI.

The SFT analysis runs two different functions:

• The first one verifies the currents and power limits on the N-FEE with the HK of the AEU voltages
and currents.

• The second analyses the image data and verifies that the electronic offset and readout noise are
within the acceptable boundaries for the given camera.

These functions produce several standard output files, consisting in

• plots of the data

• text files with the limit-checks and success-criteria.

The HK checks produce the following files:

• sft_analysis_<camera>_<obsid>_HK_AEU-CRIO_VI.png

• sft_analysis_<camera>_<obsid>_HK_checks.txt

where <camera> is the camera.ID, e.g. 'duvel', and <obsid> is the observation id, e.g. ‘01234’.

The former is a plot of the HK, looking like this for an SFT measurement on Brigand:

PLATO-KUL-PL-MAN-0004 KU Leuven

10.3. Analysis of the Short Function Test (SFT) | 71

Figure 12. Standard output of the HK checks in the SFT analysis. The top panel shows the voltages, while
the currents are on the bottom. The blue dashed lines mark the FEE-mode transitions (starting with OFF,
then ON, STANDBY and FULL_IMAGE_MODE). The dashed gray lines mark the frame acquisition times
during the execution of n_cam_acquire_and_dump.

The latter file is a text file and contains the limit-checks for currents and power consumption, and
nominally ends with a message formatted like this:

All V-AEU OK: True
All V-FEE OK: True
All I OK: True
All P OK: True

All values OK.

IF offsets & readout noise OK, you can PROCEED.

KU Leuven PLATO-KUL-PL-MAN-0004

72 | 10. Switching ON/OFF the Camera

If any of the checks are invalid it recommends to “STOP for analysis”.

The image analysis part produces the following files:

• sft_analysis_<camera>_<obsid>_img_raw.png

• sft_analysis_<camera>_<obsid>_img_offsetSubtracted.png

• sft_analysis_<camera>_<obsid>_img_avg_rows_and_columns.png

• sft_analysis_<camera>_<obsid>_img_checks_offsets_ron_<func>.txt

where <func> is the statistical function used to combine the results obtained from individual columns
(default is ‘mean’).

The ‘raw’ image displays one full-frame image of the 4 CCDs (the layer is chosen at run-time of the
analysis, and is reported in the image itself).

The offsetSubtracted image corresponds to the same data, after subtraction from the offset computed
from the serial overscan columns.

The avg_rows_and_columns presents the average row and column profiles of the image area (including
parallel overscan) of the 8 half-CCDs independently.

Examples of such images can be found below.

The text file contains the limit-checks for electronic offsets and readout noise, and nominally ends
with a message formatted like this:

Summary
off_spre OK
off_sover OK
off_pover OK
off_img OK
noise_sover OK
noise_img_col OK

Checks of CCD offsets & r.o.n. OK.

IF voltage checks OK, you can PROCEED.

Here as well, if any of the checks are invalid it recommends to “STOP for analysis”.

Table 2. Standard images output by the SFT analysis.

Figure 13. The RAW image. Figure 14. Image after offset-subtraction.

PLATO-KUL-PL-MAN-0004 KU Leuven

10.3. Analysis of the Short Function Test (SFT) | 73

Figure 15. Standard image output of the SFT analysis, presenting the average row and column profiles
for the image-area in all half-CCDs.

[1] A REPL (Read-Eval-Print Loop) is an interactive programming environment that allows users to enter Python code, which is
then executed, and the results are immediately displayed, aka the Python command prompt.

KU Leuven PLATO-KUL-PL-MAN-0004

74 | 10. Switching ON/OFF the Camera

11. Operating the AEU EGSE

11.1. Introduction
On the spacecraft, the Ancillary Electronics Unit (AEU) is providing the FEE with the necessary
stabilised secondary voltages and is also providing synchronisation signals to allow the different FEEs
to synchronise their CCD readout cycle to the temperature control system (TCS) heater power
switching.

On CAM level, we do not use a flight-like AEU. A dedicated AEU EGSE is providing the power supplies
and synchronisation signals needed to operate a single N-type or single F-type camera.

The AEU EGSE supplies 6 voltages to the FEE:

• V_CCD

• V_CLK

• V_AN1

• V_AN2

• V_AN3

• V_DIG

Figure 16, Figure 17, Figure 18, and Figure 19 list the default voltage and current values for the N-AEU
and F-AEU.

Figure 16. Default voltage values for the N-AEU.

PLATO-KUL-PL-MAN-0004 KU Leuven

11.1. Introduction | 75

Figure 17. Default current values for the N-AEU.

Figure 18. Default voltage values for the F-AEU.

Figure 19. Default current values for the F-AEU.

The AEU EGSE provides sync pulses to the N-FEE, F-FEE, TCS EGSE, and the EGSE (e.g. shutter
controller of the OGSE). The following synchronisation signals can be configured:

• Clk_N_ccdread_AEU / Clk_F_ccdread_AEU;

• Clk_heater (nominal/redundant in case of operating an F-CAM);

• Clk_50MHz (nominal redundant in case of operating an N-CAM)

The synchronisation output signal timings are shown in Figure 20.

KU Leuven PLATO-KUL-PL-MAN-0004

76 | 11. Operating the AEU EGSE

Figure 20. Synchronisation output signal timings: Clk_ccdread & Clk_heater, as taken from RD-05.

11.2. AEU switch on and off
The AEU is switched on by the operator by powering up the unit. During the first 3 minutes after
powering up no AEU commanding shall take place. The front-panel leds stand-by, self-test, functional
check & TVAC, and alignment will be blinking until the system is ready.

11.3. Changing between AEU EGSE operation modes
The AEU EGSE has 4 functional modes:

Stand-by:

PLATO-KUL-PL-MAN-0004 KU Leuven

11.2. AEU switch on and off | 77

• AEU EGSE has power and is ready to receive commands;

• AEU EGSE distributes telemetry;

• No sync signal is generated;

• All FEE secondary voltages are down and cannot be activated.

Functional check & TVAC mode

• AEU EGSE has power and is ready to receive commands;

• AEU EGSE distributes telemetry;

• All sync signals can be commanded on/off;

• Secondary voltage generation can be commanded on and off.

(ambient) Alignment operating mode

• AEU EGSE has power and is ready to receive commands;

• AEU EGSE distributes telemetry;

• Only following synchronisation signals can be commanded on/off:

◦ Clk_50MHz_N-AEU_N-FEE;

◦ Clk_50MHz_F-AEUnom_F-FEE;

◦ Clk_50MHz_F-AEUred_F-FEE.

• The secondary voltage generation can be commanded on/off;

Self-test

• EGSE runs a self-diagnostic to check the status of its sync and secondary voltage outputs, and
reports the results in its TM;

• The GSE autonomously reverts to stand-by mode once the self-diagnostic is complete;

• In this mode, the FEE and TCS EGSE have to be physically disconnected from the AEU EGSE, and
their connectors on the AEU EGSE have to be connected to the test port connector on the AEU
EGSE.

Figure 21. AEU EGSE mode transitions.

Switching modes:

>>> from egse.aeu.aeu import OperatingMode
>>> aeu.set_operating_mode(OperatingMode.STANDBY)
>>> aeu.set_operating_mode(OperatingMode.FC_TVAC)
>>> aeu.set_operating_mode(OperatingMode.ALIGNMENT)

KU Leuven PLATO-KUL-PL-MAN-0004

78 | 11. Operating the AEU EGSE

>>> aeu.set_operating_mode(OperatingMode.SELFTEST)

Checking in which mode the AEU is:

>>> mode = aeu.get_operating_mode()

11.4. Power supply Unit: Setting and checking
Current and voltage protections
To read the voltage and current setpoints, and the corresponding over-protection values (OVP and
OCP) from the power supply units:

>>> v_ccd, v_clk, v_an1, v_an2, v_an3, v_dig = aeu.get_psu_voltage_setpoints()
>>> ovp_ccd, ovp_clk, ovp_an1, ovp_an2, ovp_an3, ovp_dig = aeu.get_psu_ovp()
>>> i_ccd, i_clk, i_an1, i_an2, i_an3, i_dig = aeu.get_psu_current_setpoints()
>>> ocp_ccd, ocp_clk, ocp_an1, ocp_an2, ocp_an3, ocp_dig = aeu.get_psu_ocp()

To read the measured voltages and currents from the power supply units:

>>> v_ccd, v_clk, v_an1, v_an2, v_an3, v_dig = aeu.get_psu_voltages()
>>> i_ccd, i_clk, i_an1, i_an2, i_an3, i_dig = aeu.get_psu_currents()

11.5. FEE voltages and currents
To read the measured values for the voltages and currents, and the corresponding protection values
(UVP, OVP, and OCP):

For the N-CAM:

>>> v_ccd, v_clk, v_an1, v_an2, v_an3, v_dig = aeu.get_n_cam_voltages()
>>> uvp_ccd, uvp_clk, uvp_an1, uvp_an2, uvp_an3, uvp_dig = aeu.get_n_cam_uvp()
>>> ovp_ccd, ovp_clk, ovp_an1, ovp_an2, ovp_an3, ovp_dig = aeu.get_n_cam_ovp()
>>> i_ccd, i_clk, i_an1, i_an2, i_an3, i_dig = aeu.get_n_cam_currents()
>>> ocp_ccd, ocp_clk, ocp_an1, ocp_an2, ocp_an3, ocp_dig = aeu.get_n_cam_ocp()

For the F-CAM:

>>> v_ccd, v_clk, v_an1, v_an2, v_an3, v_dig = aeu.get_f_cam_voltages()
>>> uvp_ccd, uvp_clk, uvp_an1, uvp_an2, uvp_an3, uvp_dig = aeu.get_f_cam_uvp()
>>> ovp_ccd, ovp_clk, ovp_an1, ovp_an2, ovp_an3, ovp_dig = aeu.get_f_cam_ovp()
>>> i_ccd, i_clk, i_an1, i_an2, i_an3, i_dig = aeu.get_f_cam_currents()
>>> ocp_ccd, ocp_clk, ocp_an1, ocp_an2, ocp_an3, ocp_dig = aeu.get_f_cam_ocp()

PLATO-KUL-PL-MAN-0004 KU Leuven

11.4. Power supply Unit: Setting and checking Current and voltage protections | 79

11.6. FEE voltage memories
The AEU EGSE provides three memory positions to store default values for the FEE voltages: position
A, B, C.

TBD: We store the nominal N-FEE values in memory position A, the nominal values for F-FEE in
memory position B. + commands to store voltages, currents, protection values in the memory
positions

11.7. AEU powering up and down FEE
To power on and off the N- or F-CAM, the following building blocks can be used:

>>> aeu.n_cam_swon()
>>> aeu.n_cam_swoff()

>>> aeu.f_cam_swon()
>>> aeu.f_cam_swoff()

Note that switching on the camera, will put the AEU in functional check and TVAC mode. Switching
off, will put it back to stand-by mode.

11.8. AEU configuring synchronisation signals
For the N-CAM, the synchronisation signals must be configured according to the desired image cycle
time. Allowed values for the image cycle time are: 25, 31.25, 37.50, 43.75, and 50s. Note that - for image
cycle times longer than 25s - not all heater sync pulses are synchronised with a Clk_ccdread sync
pulse.

The following building blocks enable and disable the clock sync signals that are sent to the N-FEE (i.e.
Clk_50MHz, Clk_ccdread (here with an image cycle time of 25s), and Clk_heater (synchronised with
Clk_ccdread)):

>>> aeu.n_cam_sync_enable(image_cycle_time=25)
>>> aeu.n_cam_sync_disable()

For the F_CAM, the following building blocks enable and disable the clock sync signals that are sent to
the F-FEE (i.e.Clk_50MHz, Clk_F_ccdread, and Clk_heater (synchronised with Clk_F_ccdread); nominal
clocks only):

>>> aeu.f_cam_sync_enable()
>>> aeu.f_cam_sync_disable()

To check the sync status of the clocks (i.e. whether or not they are enabled) and whether or not a
synchronisation failure has been detected:

For the N-CAM:

KU Leuven PLATO-KUL-PL-MAN-0004

80 | 11. Operating the AEU EGSE

>>> clk_50mhz, clk_ccdread = aeu.get_n_cam_sync_status()
>>> clk_50mhz, clk_ccdread = aeu.get_n_cam_sync_quality()

For the F-CAM:

>>> clk_50mhz_nom, clk_50_mhz_red, clk_ccdread_nom, clk_ccdread_red = aeu.get_f_cam_sync_status()
>>> clk_50mhz_nom, clk_50_mhz_red, clk_ccdread_nom, clk_ccdread_red = aeu.get_f_cam_sync_quality()

For the SVM/heater:

>>> clk_50mhz_nom, clk_50mhz_red, clk_heater_nom, clk_heater_red = aeu.get_svm_sync_status()
>>> clk_50mhz_nom, clk_50mhz_red, clk_heater_nom, clk_heater_red = aeu.get_svm_sync_quality()

Figure 22. Clk_N_ccdread (purple) sync pulses and Clk_heater pulses(orange) with image cycle time set to
50s (instead of the nominal 25s). Note that the pulse to read the 1st CCD is wider. The Clk_heater pulses
continue with a period of 12.5s, independently of the image cycle time so if the image cycle time is not
25s, the heater will not always be synchronised with a CCD readout.

11.9. AEU self test
When the AEU is put in self-test mode (see Section 11.3), the loopback option can be set as follows:

>>> aeu.selftest(LoopBack.NO_LOOPBACK)
>>> aeu.selftest(LoopBack.F_CAM_NOM)
>>> aeu.selftest(LoopBack.F_CAM_RED)
>>> aeu.selftest(LoopBack.N_CAM)
>>> aeu.selftest(LoopBack.SVM_NOM)
>>> aeu.selftest(LoopBack.SVM_RED)

PLATO-KUL-PL-MAN-0004 KU Leuven

11.9. AEU self test | 81

11.10. AEU Telemetry parameters

11.11. Functional summary
At the start of a test day, the following two AEU building blocks must be executed (either
independently or in another building block):

KU Leuven PLATO-KUL-PL-MAN-0004

82 | 11. Operating the AEU EGSE

For N-CAM testing: For F-CAM testing:

>>> aeu.n_cam_swon()
>>> aeu.n_cam_sync_enable(image_cycle_time)

>>> aeu.f_cam_swon ()
>>> aeu.f_cam_sync_enable()

At the end of a test day, the following two AEU building blocks must be executed (either independently
or in another building block):

For N-CAM testing: For F-CAM testing:

>>> aeu.n_cam_sync_disable()
>>> aeu.n_cam_swoff()

>>> aeu.f_can_sync_disable()
>>> aeu.f_cam_swoff()

PLATO-KUL-PL-MAN-0004 KU Leuven

11.11. Functional summary | 83

12. Operating the N-FEE
This section describes some basic principles on the N-FEE design and their practical impact on the N-
FEE, CCD and camera operations.

12.1. Glossary
• Parallel: direction parallel to the columns of the CCD (sometimes referred to as “vertical”).

• Serial: direction parallel to the rows of the CCD (sometimes referred to as “horizontal”).

• Readout register: single row of pixels below the active region of the CCD, used to transfer the
charges in the serial direction towards the readout amplifier.

• Partial readout: describes a CCD readout process in which only a given range of CCD rows are
digitized. The rows between the region and the readout register are dumped during the readout
process, i.e., the recorded signal is not digitized, it is not transferred to the FEE and will not appear
in the data.

• Windowing: refers to an FEE operating mode in which a pre-defined collection of windows on the
CCDs is transferred to the DPU (during CAM-tests: the EGSE). The entire CCDs are readout and
digitized, but only the pre-defined windows are transferred. The windowing mode is not used
during alignment nor TVAC Camera testing and will not be discussed in this document.

• Dumping: a row during readout means to continuously reset the readout register. The charges
transferred from the active region of the CCD are lost. The absence of serial transfer makes it
much faster to dump a line (90 µs) than to read it out normally (parallel transfer 110μs + serial
transfer ~800μs).

• Clearout: dumping all or part of a CCD.

• E and F: the Plato CCDs dispose of 2 readout amplifiers. The left and right halves of the CCD are
transferred to the corresponding amplifier (they behave almost like independent CCDs). For some
reason that thy shall not ask, E and F refer to the right and left halves of a CCD (mnemonic: same
order as in “FEE”) respectively.

• Cycle: period between two long-synchronisation pulses (see below)

12.2. N-FEE operating modes
A complete list of the N-FEE operating modes can be found in RD-06. The main modes for camera
testing are:

• ON: FEE powered on; CCDs powered off. This mode allows transitions to the test-pattern
acquisition modes and to the STANDBY mode.

• STANDBY: FEE powered on; CCDs powered on. The CCDs are properly biased but not readout, i.e.,
they are “indefinitely integrating”.

• FULL_IMAGE:

◦ allowing for full-CCD acquisition

◦ highly configurable mode, also allows partial readout, reverse clocking, charge injection etc.

KU Leuven PLATO-KUL-PL-MAN-0004

84 | 12. Operating the N-FEE

◦ This is the workhorse for the ground-based tests.

• WINDOWING:

◦ allowing for the acquisition of multiple windows on the CCDs

◦ Highly configurable mode, also allows partial readout, reverse clocking, charge injection etc.

◦ This mode is the baseline for the in-flight operations.

Figure 23. FEE Operating modes (RD-06)

The N-FEE Operating modes are described in more detail in the appendix attached to RD-14. The mode
identifiers that you will probably see in Grafana screens or in housekeeping entries, are defined in the
N-FEE Register Map and listed here for your convenience.

Table 3. The N-FEE modes as defined in the Register Map for the PFM [RD-15]. The N-FEE mode is defined
by the ccd_mode_config parameter in register 21.

Mode ID (hex)

On-Mode 0x0

Full Image Pattern Mode 0x1

Windowing-Pattern Mode 0x2

Stand-By-Mode 0x4

Full Image Mode 0x5

Windowing-Mode 0x6

Soft asynchronous Reset 0x7

Immediate On-Mode (Command) 0x8

Parallel trap pumping mode 1 – Full-Image 0x9

Parallel trap pumping mode 2 – Full-Image 0xA

Serial trap pumping mode 1 – Full Image 0xB

Serial trap pumping mode 2 – Full Image 0xC

PLATO-KUL-PL-MAN-0004 KU Leuven

12.2. N-FEE operating modes | 85

Mode ID (hex)

Reserved 0xD

Reserved 0xE

Reserved 0xF

12.3. Cycle, Timing and Synchronisation
Readout timing: The AEU sends synchronization pulses to the FEE every 6.25 seconds. Every pulse
triggers a CCD-readout. In nominal operations, the 4 CCDs in one camera are addressed sequentially,
i.e. readout one at a time, delayed by one pulse period, i.e. 6.25 seconds.

Cycle time and FEE configuration: all sync-pulses trigger a CCD readout. During nominal operations,
every fourth pulse is “long” (it lasts 400ms instead of 200ms). We define the long-pulse period as the
“cycle-time”. The cycle-time is important in two respects. First, in nominal operations, it takes 4
pulses to cycle over the 4 CCDs, i.e. each CCD is readout every cycle-time seconds. Second, the FEEs, i.e.
the operating mode of the CCDs can be reconfigured whenever, but only when the FEE receives a long
pulse. The FEE-register (containing the configuration parameters) is read during the pulse and the
new configuration is immediately applied to the subsequent readouts, i.e. to integrations that were
already on-going. This is important to keep in mind for the timing of your tests (see the timing
examples in Appendix).

Exposure time: the PLATO cameras have no shutter. Consequently, the CCDs integration never stops.
In practice, the sync-pulses trigger the readout process, and the exposure time effectively corresponds
to the cycle-time minus the readout time. That means for instance that for a given cycle-time, the
effective exposure time will be longer when performing partial readout than when acquiring full-CCD
images.

Modifying the exposure time: the exposure time itself cannot be commanded at the level of the FEE.
There are nevertheless various ways to modify the exposure time:

• Increase it by changing the cycle time (see building block n_cam_partial_cycle_config, Section
12.4.8)

• Shorten it by changing the order in which we address the CCDs in the course of a cycle: e.g.
readout the same CCD at every pulse instead of cycling through the 4 CCDs (see parameter
ccd_order in Section 12.4.2).

• Increase it by not addressing a given CCD. If some given CCDs are not addressed for readout, they
continue to integrate. The next time they are addressed (after reconfiguring the FEE), their
effective exposure time will have been much longer than the nominal exposure time (e.g. for dark
current or faint ghosts).

• Disregard the AEU sync pulses and use FEE internal sync-pulses instead. This allows for exposure
times shorter than 6.25 seconds (e.g. ambient).

N-FEE internal sync-pulses: to accommodate short exposure times, the FEE can generate its own
sync-pulses. The source of the sync pulses and period of the internal pulses can be configured with the
following EGSE commands to the DPU:

KU Leuven PLATO-KUL-PL-MAN-0004

86 | 12. Operating the N-FEE

>>> n_fee_set_internal_sync(int_sync_period) # in milliseconds
>>> n_fee_set_external_sync()

You shouldn’t use these commands directly but rather call the dedicated building block:

>>> n_cam_partial_int_sync(...)



all N-FEE-generated pulses are long pulses. The cycle-time is hence identical to the
CCD readout period, and there is no “natural” cycling through the 4 CCDs. Only when
in DUMP mode, the 4 CCDs will be cycled also in internal sync. This is a feature of
the DPU Processor implemented in the CGSE and is not available in flight. This CCD
cycling in DUMP mode internal sync was implemented as of release 2023.19.0+CGSE.

12.4. Commanding the N-FEEs
The following sections describe a collection of building blocks designed to configure and operate the
FEEs and the CCDs. A list of the building blocks can also be found on the PLATO Confluence, in the
PCOT space, by following links to the “On-Ground Testing”.

Examples of time-sequencing for some operational approaches are presented in Appendix 18.A.

In this section, for the sake of simplicity, the names of the building blocks directly appear at the
python prompt (>>>), but remember that a commanding building block will exclusively be accepted
either within another building block or function, or (hence generating an observation) by the execute
command (see Section 4.1).

12.4.1. CCD and pixel references

Figure 24 (for FM) and Figure 25 (for EM) show the CCD numbering adopted for the commanding. We
will further refer to these coordinate systems as CCDn_PIX n = 1,2,3,4. Note that these

• each cover an entire CCD, without interruption at the “border” between E & F (columns 2254 to
2255), and

• differ from the CCD coordinate systems adopted in RD-10 (pix [1,1] close to the optical axis), as
well as of those adopted at FEE-level (2 coord. systems/CCD, with the x-axes in opposite directions
on E & F).

FM

PLATO-KUL-PL-MAN-0004 KU Leuven

12.4. Commanding the N-FEEs | 87

Figure 24. CCD numbering and pixel coordinates for the FM normal camera on every CCD
(CCD_PIXn reference frames). The thicker black border lines represent the readout registers.

EM

KU Leuven PLATO-KUL-PL-MAN-0004

88 | 12. Operating the N-FEE

Figure 25. CCD numbering and pixel coordinates for the EM normal camera on every CCD
(CCD_PIXn reference frames). The thicker black border lines represent the readout registers.

12.4.2. Standard building block parameters

Some of the input parameters are common to several building blocks. We list some below, to avoid
repeating them for every building block.

• num_cycles

◦ num_cycles = 0 sets the FEEs in the required configuration until commanded otherwise

◦ num_cycles > 0 indicates a finite number of cycles after which the N-FEE will automatically be
(re)set to dump mode (see dump_mode below).

• row_start, row_end

◦ These parameters configure the region of the CCD that will be readout, resulting in partial
readout mode.

◦ First, the rows < row_start are transferred and dumped.

◦ Then (row_end – row_start + 1) rows are readout and digitized.

◦ If rows_final_dump = 0, nothing else happens

• rows_final_dump

◦ If rows_final_dump > 0, after the requested number of lines have been read, rows_final_dump

PLATO-KUL-PL-MAN-0004 KU Leuven

12.4. Commanding the N-FEEs | 89

rows to transfer and dumped.

◦ This allows e.g. for a clearout of the CCD from all dark-current charges accumulated during the
readout process before starting a new integration (important at ambient temperature)

• ccd_order

◦ During nominal operations, the four CCDs are sequentially addressed during every cycle. This
parameter allows to specify and alter that sequence.

◦ Examples: [1,2,3,4], [1,3,1,3], [2,2,2,2]

• ccd_side

◦ This parameter indicates which side(s) of the CCD will be recorded. With the readout register
at the bottom, the E-side is the right half and the F-side is the left half.

◦ In full-image mode, the SpaceWire link to the DPU cannot cope with transferring full frames.
Consequently, a choice must be made, either E or F.

The entire CCDs (E and F) is readout and transmitted to the FEE, but only one side is
transmitted to the DPU (or EGSE) every cycle. Consequently, it takes a minimum of 2 cycles to
obtain full-CCD images, while the exposure time nevertheless still corresponds to one cycle

◦ This parameter accepts the following values:

▪ “E”, “F”, or “BOTH”

▪ A string of 4 characters, being either “E” or “F”, e.g. [“EFEF”]

▪ A string of 8 characters, being either “E” of “F”, e.g. [“EEEEFFFF”]

◦ If a 4 values are given, the ccd_side will be changed at every sync pulse, long or short. Four
values will hence cover one cycle_time, but it will take two full cycles to iterate over 8 values.

◦ “BOTH” means both E and F sides are recorded every cycle. While standard in windowing
mode, this is not possible in full-image mode when the camera is connected to an actual DPU,
e.g. at integrated system level (spacecraft). The N-FEEs were also neither designed nor
extensively tested for this (i.e. full image) by MSSL, but they can do it, and this mode was
shortly tested at EGSE level (with a real FEE). It shall be used with caution but remains a
possibility to speed up full-CCD image acquisition if needed due to scheduling constraints.

12.4.3. N-FEE mode transitions

Two FEE-specific building blocks currently exist to put them into specific operational “modes”:

ON mode (Section 12.2).

>>> n_fee_to_on_mode() -- building block
>>> n_fee_is_on_mode() -- function

NB: ON mode is the default mode after FEE switch on, but this building block cannot be used to power
on the FEE. That is handled by the AEU (Chapter 11).

STANDBY mode (Section 12.2).

KU Leuven PLATO-KUL-PL-MAN-0004

90 | 12. Operating the N-FEE

>>> n_fee_to_standby_mode() -- building block
>>> n_fee_is_standby_mode() -- function

12.4.4. DUMP mode

DUMP is not a genuine FEE operation mode. We defined it as a full-image mode in which the dump-
gate is maintained high, i.e. the readout register is continuously reset. That is a convenient way to
avoid saturation between tests, or building blocks of a given test. In addition, the N-FEE is configured
with digitisation disabled which means the image data is not transmitted to the DPU.

External sync

The CCD operation proceeds over the 4 CCDs with a nominal cycle-time of 25 seconds, but the data are
dumped. The default is to read out 0 lines, then do a full-frame clearout (rows_final_dump=4510).

>>> n_fee_to_dump_mode() – building block
>>> n_fee_is_dump_mode() – function

Internal sync

The CCD operation proceeds over the 4 CCDs. In this mode, we read out 10 lines normally, then
perform a full-frame clearout (rows_final_dump = 4510). The cycle time is a free parameter, but it
must by all means not be chosen shorter than the readout+clearout time. We therefore recommend
cycle_time >= 1 second.

>>> n_fee_to_dump_mode_int_sync(cycle_time, ccd_order) – building block
>>> n_fee_is_dump_mode() – function

12.4.5. N-CAM full-image, basic

Standard full-image acquisition, with a nominal cycle time of 25 seconds, cycling over the 4 CCDs, and
30 rows of over-scan. Only the duration and ccd_side must be specified. The simplest mode to acquire
full, or half-CCD images.

>>> n_cam_full_standard(num_cycles, ccd_side)

12.4.6. N-CAM full-image

Identical to n_cam_full_standard, but allows to configure the ccd_order and number of over-scan rows
as well.

>>> n_cam_full_ccd(num_cycles, ccd_order, ccd_side, rows_overscan)

PLATO-KUL-PL-MAN-0004 KU Leuven

12.4. Commanding the N-FEEs | 91

12.4.7. N-CAM full image, partial readout and final clearout

Identical to n_cam_full_ccd, but allows for partial readout & clearout after readout. The over-scan
rows are commanded via the partial-readout parameters: over-scan is only acquired if row_end >
4509.

>>> n_cam_partial_ccd(num_cycles, row_start, row_end, rows_final_dump, ccd_order, ccd_side)

12.4.8. N-CAM full image, with configurable cycle-time

Identical to n_cam_partial_ccd, including the possibility to configure longer cycle times (from 25 to 50
sec, by steps of 6.25 seconds). The readout process is not affected by the cycle_time, so the additional
time directly corresponds to an increase in exposure time.

>>> n_cam_partial_cycle_config (num_cycles, row_start, row_end, rows_final_dump, ccd_order, ccd_side, cycle_time)

12.4.9. N-CAM full image, with internal sync-pulses

Identical to n_cam_partial_ccd, with configurable exposure time. As explained in Section 12.3, the
exposure time cannot be commanded directly at CCD level but results indirectly from the long-pulse
period(cycle-time). In this mode, the input parameters are used to compute the duration of a CCD
readout, and that in turn is used to compute the cycle time allowing for the desired exposure time.

>>> n_cam_partial_int_sync(num_cycles, row_start, row_end, rows_final_dump, ccd_order, ccd_side, exposure_time)

In this mode, all sync-pulse are long pulses, i.e. the FEEs can be reconfigured before any readout.

12.4.10. N-FEE reverse clocking

Reverse clocking consists in clocking the CCD transfer voltages so that the charges are moved away
from the readout register and readout amplifier rather than towards it. It is described in RD-07, and
exists in two flavors, depending on the operation of the readout register:

• 1: serial REV

• 2: serial FWD

Both modes provide a reliable measure of the readout noise, but only the second one guarantees a
reliable measure of the digital offset. In both cases, the parallel clocks are REV.

It can be operated via the following building block:

>>> n_cam_reverse_clocking(num_cycles, clock_dir_serial, ccd_order, ccd_side)

clock_dir_serial must be either "FWD" (standard readout, representative digital offset), or "REV", for
reverse clocking in the serial direction as well.

KU Leuven PLATO-KUL-PL-MAN-0004

92 | 12. Operating the N-FEE

12.4.11. Charge injection

Charge injection is described in RD-08. It is envisaged as a means to reduce the negative effects of an
increasing CTI towards EOL.

>>> n_cam_charge_injection_full(num_cycles, row_start, row_end, rows_final_dump, ccd_order, ccd_side, ci_width,
ci_gap)

• ci_width expresses the number of rows covered by charge-injection in each block

• ci_gap expresses the number of rows between two blocks of charge-injection.

12.5. Synchronization with CCD-readouts
It may be beneficial to synchronize some commands with the CCD readouts. For instance small
movements of the source on the detector (dithering) may be fast enough to occur entirely during the
CCD readout. Synchronizing the movements on the readout hence alleviates the need to lose one
image cycle or more to “let things happen”. This can be achieved with the following approach (e.g. in
standard mode)

from camtest.commanding.dpu import on_long_pulse_do, wait_cycles, n_cam_full_standard

n_cam_full_standard(num_cycles=0, ccd_side=”E”)
for i in range(n_dithers):
 wait_cycles(num_images-1)
 on_long_pulse_do(point_source_to_fov, theta[i], phi[i], wait=False)

The first command sets the FEE into an infinite image-acquisition loop, and returns immediately. In
the loop, the wait command “counts” the right number of cycles (images) before returning. Finally, the
command on_long_pulse_do will wait until the next long synchronisation pulse and then trigger the
embedded command, making sure it starts simultaneously with the CCD readout.

The on_long_pulse_do command will only execute the function passed as the argument to
on_lon_pulse_do. If you want to execute several commands, or include a delay: use wait_cycles(1) to
hold till the system sees the long pulse. The subsequent commands in your script will be executed
after the long pulse.

Notes:

• on_long_pulse_do(command) triggers the command on the long pulse, i.e. it synchronize it with the
readout of one particular CCD (the first one appearing in the parameter ccd_order), not all four.

• A mechanical movement + its stabilisation may take a significant amount of time, even for small
movements. If this turns out to be longer than the readout time, it will spill over the next
integration time, which is undesirable. In order to avoid losing a 25 sec cycle for just a few
hundred milliseconds, one can artificially increase the readout duration thanks to the parameter
n_rows_final_dump, available in all partial readout observing modes (Section 12.4.2).

PLATO-KUL-PL-MAN-0004 KU Leuven

12.5. Synchronization with CCD-readouts | 93

13. Operating the F-FEE
This section describes some basic principles on the F-FEE design and their practical impact on the F-
FEE, CCD and camera operations.

13.1. Glossary
• Parallel: direction parallel to the columns of the CCD (sometimes referred to as “vertical”).

• Serial: direction parallel to the rows of the CCD (sometimes referred to as “horizontal”).

• Readout register: single row of pixels below the active region of the CCD, used to transfer the
charges in the serial direction towards the readout amplifier.

• Partial readout: describes a CCD readout process in which only a given range of CCD rows are
digitized. The rows between the region and the readout register are dumped during the readout
process, i.e., the recorded signal is not digitized, it is not transferred to the FEE and will not appear
in the data.

• Windowing: refers to an FEE operating mode in which a pre-defined collection of windows on the
CCDs is transferred to the DPU (during CAM-tests: the EGSE). The entire CCDs are readout and
digitized, but only the pre-defined windows are transferred. The windowing mode is not used
during alignment nor TVAC Camera testing and will not be discussed in this document.

• Dumping: a row during readout means to continuously reset the readout register. The charges
transferred from the active region of the CCD are lost. The absence of serial transfer makes it
much faster to dump a line (90 µs) than to read it out normally (parallel transfer 110μs + serial
transfer ~800μs).

• Clearout: dumping all or part of a CCD.

• E and F: the Plato CCDs dispose of 2 readout amplifiers. The left and right halves of the CCD are
transferred to the corresponding amplifier (they behave almost like independent CCDs). For some
reason that thy shall not ask, E and F refer to the right and left halves of a CCD (mnemonic: same
order as in “FEE”) respectively.

• Cycle: period between two long-synchronisation pulses (see below)

13.2. F-FEE operating modes
A complete list of the F-FEE operating modes can be found in RD-16. The main modes for camera
testing are:

• ON: FEE powered on; CCDs powered off. This mode allows transitions to the test-pattern
acquisition modes and to the STANDBY mode.

• STANDBY: FEE powered on; CCDs powered on. The CCDs are properly biased but not readout, i.e.,
they are “indefinitely integrating”.

• FULL_IMAGE:

◦ allowing for full-CCD acquisition

◦ allows for reverse clocking (serial direction only)

KU Leuven PLATO-KUL-PL-MAN-0004

94 | 13. Operating the F-FEE

◦ This is the workhorse for the ground-based tests.

• WINDOWING:

◦ allowing for the acquisition of multiple windows on the CCDs

◦ This mode is the baseline for the in-flight operations.

Figure 26. FEE Operating modes (RD-16)

13.3. Cycle, Timing and Synchronisation
CCD In this section we assume that CCD refers to the half-CCD that is exposed to light. The 'bottom' half,
i.e. the storage area is never discussed. The term 'half-CCD' here refers to either the F or the E side of
(half) a detector, hence physically one fourth CCD, i.e. 2255 x 2255 pixels (+ pre- and over-scans).

• Readout timing: The AEU sends synchronization pulses to the FEE every 2.5 seconds. Every pulse
triggers a CCD-readout. In windowing mode, the 4 CCDs in one camera are addressed
simultaneously, but on the ground we only use full-image mode. In that mode maximum 2 CCDs
can be addressed simultaneously (see below).

• Cycle time and FEE configuration: Cycle time is defined as 2.5 seconds. Given that not all CCDs
can be read within a cycle, it will require more to command more than one cycle for each frame to
acquire from a given CCD.

• Exposure time: the PLATO cameras have no shutter. Consequently, the CCDs integration never
stops. In practice, the sync-pulses trigger the readout process, and the exposure time effectively
corresponds to the cycle-time minus the frame-transfer time. Unless otherwise stated, all CCDs are
readout at every cycle, even if the data cannot be transferred to the DPU. Consequently the
effective exposure time is fixed to 2.5 seconds minus transfer-time for all CCDs, even if it takes 2 or
4 cycles to acquire the next image of a given CCD.

• Modifying the exposure time: is not possible by default. One work-around is to leave some CCDs
in STANDBY mode while reading out one or two other detectors. This is the goal of the keyword

PLATO-KUL-PL-MAN-0004 KU Leuven

13.3. Cycle, Timing and Synchronisation | 95

'others_standby' provided in the observing mode f_cam_full_ccd

• F-FEE internal sync-pulses: are unaccessible to user-commands

• E and F CCD sides RD-16 designate the E and F sides of the CCD as 'left' and 'right' respectively
when looking from the sky (readout register at the bottom), i.e. the opposite convention as used
for the N-CAMs. In order to avoid confusion and simplify the commanding an analysis, it was
decided to take care of that in the EGSE software, so that the commanding and the data products
follow the same convention as for the N-CAMs, i.e. F on the left, and E on the right when looking
from the sky, assuming the readout register is at the bottom.

• pre-scans and over-scans The F-CAMs will have 24 serial pre-scan and 16 serial overscan
columns. It will have 15 parallel overscan rows. None of those parameters is commandable.

• partial readout is not possible with the F-FEEs

• CCD clearout is not possible with the F-FEEs. This is a consequence of the fixed parallel overscan.

• Charge injection is not possible with the F-FEEs.

• Reverse clocking is only possible in the serial direction.

13.4. Commanding the F-FEEs
The following sections describe a collection of building blocks designed to configure and operate the
FEEs and the CCDs.

In this section, for the sake of simplicity, the names of the building blocks directly appear at the
python prompt (>>>), but remember that a commanding building block will exclusively be accepted
either within another building block or function, or (hence generating an observation) by the execute
command (see Section 4.1).

13.4.1. CCD and pixel references

Figure 27 and Figure 28 show the CCD numbering adopted for the commanding. We will further refer
to these coordinate systems as CCDn_PIX n = 1, 2, 3, 4. Note that

• each cover an entire CCD, without interruption at the “border” between E & F (columns 2254 to
2255), and

• these differ from the CCD coordinate systems adopted in RD-10 (pix [1,1] close to the optical axis),

as well as of those adopted at FEE-level (2 coord. systems/CCD, with the x-axes in opposite directions
on E & F).

RED

KU Leuven PLATO-KUL-PL-MAN-0004

96 | 13. Operating the F-FEE

Figure 27. CCD numbering and pixel coordinates for the FM red fast camera on every CCD
(CCD_PIXn reference frames). The thicker black border lines represent the readout registers, the
gray shaded areas are the parts of the CCD that is shielded off against incoming light.

BLUE

PLATO-KUL-PL-MAN-0004 KU Leuven

13.4. Commanding the F-FEEs | 97

Figure 28. CCD numbering and pixel coordinates for the FM blue fast camera on every CCD
(CCD_PIXn reference frames). The thicker black border lines represent the readout registers, the
gray shaded areas are the parts of the CCD that is shielded off against incoming light.

13.4.2. Standard building block parameters

Some of the input parameters are common to several building blocks. We list some below, to avoid
repeating them for every building block.

• num_cycles

◦ num_cycles = 0 sets the FEEs in the required configuration until commanded otherwise

◦ num_cycles > 0 indicates a finite number of cycles after which the N-FEE will automatically be
(re)set to dump mode (see dump_mode below). Since not all CCDs are recorded every cycle,
contrary to the N-CAMs, num_cycles does not always correspond to the number of frames
acquired on each requested detector. See the descritpion of the observing modes for more
details.

• ccd_order

◦ During nominal operations, the four CCDs are addressed simultaneously, every cycle. This is
not possible in FULL-IMAGE-MODE though. This parameter allows to specify the detectors to
readout (when applicable).

• ccd_side

◦ This parameter indicates which side(s) of the CCD will be recorded. With the readout register
at the bottom, the E-side is the right half and the F-side is the left half.

KU Leuven PLATO-KUL-PL-MAN-0004

98 | 13. Operating the F-FEE

◦ This parameter accepts the following values:

▪ “E”, “F”, or “BOTH”

▪ “BOTH” means both E and F sides are recorded every cycle. While standard in windowing
mode, this is not possible in full-image mode when the camera is connected to an actual
DPU, e.g. at integrated system level (spacecraft). Since it doubles the required bandpass
and since some EGSE have shown problems to cope with high datarates during the N-CAM
testing, it shall be used with caution but remains a possibility to speed up full-CCD image
acquisition if needed due to scheduling constraints.

13.4.3. F-FEE mode transitions

Two F-FEE-specific building blocks currently exist to put them into specific operational “modes”:

ON mode (Section 13.2).

>>> f_fee_to_on_mode() -- building block
>>> f_fee_is_on_mode() -- function

NB: ON mode is the default mode after FEE switch on, but this building block cannot be used to power
on the FEE. That is handled by the AEU (Chapter 11).

STANDBY mode (Section 13.2).

>>> f_fee_to_standby_mode() -- building block
>>> f_fee_is_standby_mode() -- function

13.4.4. DUMP mode

DUMP is not a genuine FEE operation mode. Given that the dump-gate cannot be commanded on the
F-CAMs, we defined DUMP mode as it as a full-image mode where the data are just not recorded. That
means that the readout cycle or the thermal behaviour of the camera are not affected, we just stop
recording the data. That is a convenient way to avoid saturation between tests that would occur in
STANDBY mode.

>>> f_fee_to_dump_mode() – building block
>>> f_fee_is_dump_mode() – function

13.4.5. F-CAM full-image, standard

This is the baseline mode for F-CAM FULL-IMAGE-MODE acquisition.

The parameters are:

• num_cycles: duration of the image acquisition. Each cycle is 2.5 seconds long.

• ccd_side: 'E', 'F' or 'BOTH'. This parameter has no impact on the test duration

• fast: controls if one or two CCDs are acquired every cycle

PLATO-KUL-PL-MAN-0004 KU Leuven

13.4. Commanding the F-FEEs | 99

◦ Fast = True:

▪ CCDs 1 and 3 are acquired simultaneously, alternating with CCDs 2 and 4

▪ num_cycles must be a multiple of 2

▪ the test results in num_cycles / 2 images for every detector (or half-detector, depending on
ccd_side)

◦ Fast = False:

▪ the CCDs are acquired in sequence, 1, 2, 3, 4.

▪ num_cycles must be a multiple of 4

▪ the test results in num_cycles / 4 images for every detector (or half-detector, depending on
ccd_side)

>>> f_cam_full_standard(num_cycles, ccd_side, fast)

13.4.6. F-CAM full CCD

Identical to f_cam_full_standard, but allows for more flexibility on the configuration of individual
detectors.

The parameters are:

• num_cycles: duration of the image acquisition. Each cycle is 2.5 seconds long.

• ccd: detector selection. Integer number in [1, 2, 3, 4], equivalent to ccd_order=[ccd, ccd, ccd, ccd] in
the N-CAMs

• ccd_side: 'E', 'F' or 'BOTH'. This parameter has no impact on the test duration

• others_standby:

◦ others_standby = False: the other CCDs are readout normally, but not recorded, i.e. they are in
the F-FEE equivalent of DUMP mode.

◦ others_standby = True: the other CCDs are in STANDBY mode, i.e. not readout and
accumulating charges as long as this command lasts.

>>> f_cam_full_ccd(num_cycles, ccd, ccd_side, others_standby)

13.4.7. F-FEE reverse clocking

Reverse clocking consists in clocking the CCD transfer voltages so that the charges are moved away
from the readout register and readout amplifier rather than towards it.

With the F-FEEs, it is not possible to configure the F-FEE to operate reverse clocking in the parallel
direction. It is only possible in the serial direction.

This mode should provide access to estimates of the offset and readout noise.

It can be operated via the following building block:

KU Leuven PLATO-KUL-PL-MAN-0004

100 | 13. Operating the F-FEE

>>> n_cam_reverse_clocking(num_cycles, ccd, ccd_side)

13.5. Synchronization with CCD-readouts
To synchronize some commands with the CCD readouts, please refer to [sec-synchronisation-detector-
mgse]

PLATO-KUL-PL-MAN-0004 KU Leuven

13.5. Synchronization with CCD-readouts | 101

14. Operating the TCS EGSE
TCS EGSE is providing monitoring and control of the TRP1 and TRP22 temperatures on the camera
(TOU and FEE).

TRP (Thermal Reference Points) that are monitored:

• TRP1 (3 sensors, 1nominal/1redundant heater): the TRP controlling the overall TOU temperature,
used for thermal focusing

• TRP 22 (1 sensor, 1 nominal / 1 redundant heater): the survival heater on the FEE. This is not used
when the FEE is on, it is only used to bring the FEE to its operational temperature if it is too cold to
be switched on.

The TCS EGSE has different operating modes:

• Normal operating mode of the camera: all the temperatures are acquired and nominally only the
TRP1 heater is controlled but TRP22 heater could be added (change of configuration in
configuration mode required)

• Safe operating mode: all the temperatures are acquired and TRP1 heater is controlled as well as
FEE heater

• Decontamination mode or de-icing mode: all the temperatures are acquired and nominally only
TRP1 heater is controlled but TRP22 heater could be added (change of configuration in
configuration mode required)

• Camera calibration mode: only thermistor reading is performed and heaters are not activated

• EMC mode: replay of a heater control sequence, sensor used only for monitoring and switch off in
case of temperature limit is exceeded

• Extended mode: all parameters are fully configurable.

The TCS EGSE is changing the TRP1 heater power with PWM (Pulse Width Modulation): the current is
varied by changing the width of square full-power pulses. The width of the pulses can only be
changed at the time of an AEU clk_heater sync pulse, between CCD readouts.

The PWM pulses come at frequencies between 30 and 50 Hz - this frequency is configurable.

Clk_heater sync pulse, to avoid switching the power during a CCD readout. The TCS EGSE is updating
the heater power within 200ms after the leading edge (up-stroke) of the Clk_heater pulse.

The TCS EGSE can be operated in a local mode using the man-machine-interface (MMI). During
camera tests, for monitoring and commanding the TCS EGSE shall be in Remote Control mode.

14.1. Switching between operating modes
Switching between modes is done with just one command, set_operating_mode. The command takes
one parameter that defines the mode.

1. normal

KU Leuven PLATO-KUL-PL-MAN-0004

102 | 14. Operating the TCS EGSE

2. safe

3. decontamination|de-icing

4. calibration

5. EMC

6. self-test

7. extended

You can use either the number or the name of the mode as the argument, but it is preferred to use the
constants defined in the egse.tcs module.

>>> from egse.tcs import OperatingMode

>>> tcs.set_operating_mode(OperatingMode.NORMAL)
>>> tcs.set_operating_mode(OperatingMode.SAFE)
>>> tcs.set_operating_mode(OperatingMode.DECONTAMINATION)
>>> tcs.set_operating_mode(OperatingMode.CALIBRATION)
>>> tcs.set_operating_mode(OperatingMode.EMC)
>>> tcs.set_operating_mode(OperatingMode.SELF_TEST)
>>> tcs.set_operating_mode(OperatingMode.EXTENDED)

The mode that will be used most during camera testing is the extended mode, which allows all
parameters to be configurable.

14.1.1. Decontamination

The Decontamination heating is performed by turning ON the TRP1 heaters at full power.

14.1.2. Replay

14.2. Remote Commanding
The TCS EGSE has a set of commands at your disposal for remote commanding the device. These
commands can only be used in Remote Control mode, i.e., when the button shows orange in the MMI.
We can categorise these commands as follows:

Change the operating mode: as seen above, the command for changing the operating mode is
tcs.set_operating_mode(…) which takes one parameters that defines the mode.

>>> tcs.set_operation_mode(OperatingMode.EXTENDED)

Set configuration parameter: to change configuration parameters, use the command
tcs.set_parameter(…) which takes two arguments, the parameter name and its value. The following
command changes the temperature set point for the PI controller on channel 1 to -40ºC.

>>> tcs.set_parameter("ch1_tset", -40)

PLATO-KUL-PL-MAN-0004 KU Leuven

14.2. Remote Commanding | 103

A full list of parameters that can be configured is available in table 6.8 on page 61-68 of RD-09.

Please note that several parameters can form a group, e.g., to configure the PI controller for a certain
channel. In this case the best approach is to set all the parameters needed for that configuration and
switch to the proper mode, i.e., closed loop or open loop.

After your configuration is finished, the parameter set needs to be committed on the device. This is
done by sending a tcs.commit() command.

Run the task: When you have properly configured the TCS EGSE, you need to run the task. This is
needed to drive the controllers for the heaters and to execute the PID controller to reach and maintain
the intended temperatures.

A task is run with the tcs.run_task() command and stopped with tcs.stop_task().


Only when a task is running, the housekeeping parameters will be updated
continuously.

Retrieve Information: several commands are available to retrieve information from the TCS EGSE.

• get_data(): this command works in both local mode and remote-control mode. It retrieves
telemetry from the TCS EGSE. When a task is running, the full housekeeping is available through
this command, if no task is running, only load time and system resources are available.

• get_housekeeping_value(<parameter name>): a list of all housekeeping parameters is available in
table 6.6 on page 50-58 of RD-09.

• get_all_housekeeping(): this command only work in remote-control mode and retrieves all the
housekeeping values from the TCS EGSE. Note however, that, when no task is running, the
housekeeping will be outdated. To follow up-to-date telemetry with this command, make sure the
task is running.

• get_error(): this command returns any error that occurred and showed up in the MMI display.
Note that there is no way to clear the errors, so the output of this command can be outdated also.

• get_configuration(): this command retrieves the full set of configuration parameters with their
current value.

KU Leuven PLATO-KUL-PL-MAN-0004

104 | 14. Operating the TCS EGSE

Figure 29. The TCS EGSE Viewer gives an overview of the TCS Housekeeping parameters with their latest
engineering values. There are two TABs (1) the Configuration tab which shows the current configuration
parameters and their values, and (2) the Housekeeping tab which updates every 10s with the latest
housekeeping parameters.

Convenience Functions: two convenience functions are available to show information in a nice
colour table. If you need a quick overview of the configuration or the housekeeping in the REPL or in
a Jupyter Notebook, use the following functions:

>>> from egse.tcs.tcs import print_all_housekeeping
>>> from egse.tcs.tcs import print_configuration

>>> print_all_housekeeping()
>>> print_configuration()

PLATO-KUL-PL-MAN-0004 KU Leuven

14.2. Remote Commanding | 105

14.3. The TCS Data Acquisition System —DAS
Monitoring TCS EGSE telemetry can best be done with the TCS data acquisition das. The das command
is used from the terminal as follows:

$ das tcs --interval 10

The above command will retrieve TCS housekeeping telemetry every 10 seconds. The data is sent to
the Storage Manager that saves the telemetry in a CSV file on the egse-server. The das also makes the
temperatures of the TOU, FEE, and the ambient and internal temperatures available for Prometheus
to be monitored by Grafana.

Please note that this command should preferably run on the egse-server and be started by the site-
operator (see Section 1.3). The test-operator can inspect the metrics from the TCS EGSE data
acquisition in the Grafana display.

14.4. Setting the temperature setpoints
TBW

14.5. Enabling / disabling temperature control
TBW

14.6. Temperature sensor configuration
TBW

14.6.1. Disabling TRP1 sensors to verify redundancy function

14.6.2. Switching from TRP1 mean to median

14.7. Changing temperature sensor calibration curves
TBW

14.8. Changing PI control parameters
TBW

14.9. Changing the PWM frequency
TBW

KU Leuven PLATO-KUL-PL-MAN-0004

106 | 14. Operating the TCS EGSE

15. Operating the TEB, shroud and MARI
thermal control

15.1. Context
The test houses implement the temperature control of 6 Temperature Reference points (TRP) of
temperature interfaces to the camera: three temperatures of the Thermal Environment Box (TEB): the
TEB_SKY, a shroud offering a cold radiative cooling sink to the TOU baffle, an upper segment
TEB_TOU, offering the radiative environment seen by the TOU tube (covered in MLI) above the optical
bench on the spacecraft, a lower segment TEB_FEE offering the radiative environment in the optical
bench cavity seen by the FEE onboard the spacecraft, and the mounting points of the 3 TOU bipods on
the manipulation ring (TRP2,3,4) which are representing the conductive interface of the optical bench
as seen by the TOU bipods on the spacecraft.

All six TRPs are controlled independently, and we can check and change the temperature setpoints,
and switch the control on / off for each TRP.

PLATO-KUL-PL-MAN-0004 KU Leuven

15.1. Context | 107

Figure 30. Test setup at IAS, with TEB_SKY, TEB_FEE, TEB_TOU and MaRi indicated

15.2. Checking and setting the temperature setpoints
Table 4. Heater patches at the bottom of the MaRi for control of TRP 2, 3,4 (left) and corresponding
temperature sensors on the top, right next to the interface holes for the TOU bipods (right)

Heater patches Temperature Sensors

KU Leuven PLATO-KUL-PL-MAN-0004

108 | 15. Operating the TEB, shroud and MARI thermal control

Changing the setpoints:

>>> execute(tgse.set_temp_setpoint(trp=tgse.TRP.TEB_SKY, temperature=<temperatureCelsius>))
>>> execute(tgse.set_temp_setpoint(trp=tgse.TRP.TEB_TOU, temperature=<temperatureCelsius>))
>>> execute(tgse.set_temp_setpoint(trp=tgse.TRP.TEB_FEE, temperature=<temperatureCelsius>))
>>> execute(tgse.set_temp_setpoint(trp=tgse.TRP.TRP2, temperature=<temperatureCelsius>))
>>> execute(tgse.set_temp_setpoint(trp=tgse.TRP.TRP3, temperature=<temperatureCelsius>))
>>> execute(tgse.set_temp_setpoint(trp=tgse.TRP.TRP4, temperature=<temperatureCelsius>))
>>> execute(tgse.set_temp_setpoint(trp=tgse.TRP.TRP234, temperature=<temperatureCelsius>))

The effect of the last command (changing TRP234) is the same as setting TRP2, 3, 4 to the same
setpoint.

Checking the setpoints:

>>> setpoint = tgse.get_temp_setpoint(trp=tgse.TRP.TEB_SKY)
>>> setpoint = tgse.get_temp_setpoint(trp=tgse.TRP.TEB_TOU)
>>> setpoint = tgse.get_temp_setpoint(trp=tgse.TRP.TEB_FEE)
>>> setpoint = tgse.get_temp_setpoint(trp=tgse.TRP.TRP2)
>>> setpoint = tgse.get_temp_setpoint(trp=tgse.TRP.TRP3)
>>> setpoint = tgse.get_temp_setpoint(trp=tgse.TRP.TRP4)

15.3. Starting / stopping the temperature control loop

>>> execute(tgse.start_control(trp=tgse.TRP.TEB_SKY))
>>> execute(tgse.start_control(trp=tgse.TRP.TEB_TOU)
...
>>> execute(tgse.stop_control(trp=tgse.TRP.TEB_SKY))
>>> execute(tgse.stop_control(trp=tgse.TRP.TEB_TOU)
...

PLATO-KUL-PL-MAN-0004 KU Leuven

15.3. Starting / stopping the temperature control loop | 109

16. Operating the OGSE
The OGSE (optical Ground Support Equipment) consists of a collimator with a pattern mask in the
focus. This pattern mask is illuminated by a fiber. The fiber is fed with a laser-driven light source that
produces a flat spectrum. Between the light source and the collimator, there is a control box that has:

• Two filter wheels with neutral density filters, allowing to attenuate the light injected into the
collimator to the different flux levels required

• A slow asynchronous shutter (not implemented at all test-houses)

• A fast shutter that is synchronised to the AEU synchronisation signal (not implemented at all test-
houses)

• A power meter monitoring the light intensity from the light source (power meter channel 1)

• A power meter monitoring the light injected into the collimator (power meter channel 2)

16.1. Switching entire OGSE on
Utility building block

The OGSE can be switched on with one simple command:

>>> execute(ogse.ogse_swon)

or the command ogse.ogse_swon() can be used in a test script.

Effect

• Switches on the OGSE controllers

• Closes the shutter (if present)

• Puts the filter wheels in a position with 100% attenuation (blank position)

• Switches on the power meter

• Switches on the light source.

• OGSE telemetry is recording.


the light source needs warming up and stabilisation; the OGSE start up script does
not wait for that.

16.2. Switching entire OGSE off
Utility building block

>>> execute(ogse.ogse_swoff)

KU Leuven PLATO-KUL-PL-MAN-0004

110 | 16. Operating the OGSE

Effect

• Switches off the power meter

• Switches off the light source.

• Switches off the OGSE controllers

• OGSE telemetry is recording.

16.3. Attenuation with Neutral density filters
The attenuation is set by a double filter wheel where specific combinations of the wheel positions
define a predefined attenuation. The following commands can be used to set the attenuation:

>>> ogse.att_level_up()

Effect: changes filter wheel combination one attenuation step higher.

>>> ogse.att_level_down()

Effect: changes filter wheel combination one attenuation step lower.

>>> ogse.set_fwc_fraction(<attenuation factor>)

Effect: will choose combination of ND filters that matches commanded factor of the full-well capacity
as close as possible.



Attenuation examples

• Attenuation factor 1.00 : both filter wheels are in the position with no Neutral
density filter, no attenuation.

• Attenuation factor 0.01: filter wheels are in a combination of Neutral density
filters delivering approximately 99% attenuation - the signal will be 100 times
smaller than with no attenuation.

• Attenuation factor 0 will put a filter wheel in the opaque plate position.

>>> ogse.set_fw_position((<wheel_a_pos>, <wheel_b_pos>))

Effect: choose manual ND filters in the two wheels, note the argument is a tuple.

You can also read this back through the housekeeping:

>>> get_housekeeping("GOGSE_ATT_LVL")

Returns the actual attenuation factor realised with the ND filter combination

PLATO-KUL-PL-MAN-0004 KU Leuven

16.3. Attenuation with Neutral density filters | 111

The CSL ambient alignment collimator provides the following attenuation factors:

Figure 31. CSL ambient alignment collimator attenuation factors (from)

16.4. Attenuation specifying the full well fraction
For every facility, a calibration will be done to relate the attenuation factor (0…1) to the fraction of the
full well that will be filled in a nominal (25sec) integration near the center of the field.

>>> ogse.set_fwc_fraction(0.5)

Will set the OGSE attenuation factor that results in the brightest pixel in the PSF near the center of the
field to be about 50% of the full well (which is roughly 1E6 for PLATO CCDs)

16.5. Switching on/off light intensity stabilisation
loop
Only implemented at IAS (TBD)

The N-camera reads out a different CCD every 6.25 seconds. You want to synchronise the shutter open
to the start of the new integration on the CCD you are interested in (where the collimator image is
seen). Setting the exposure time allows to avoid exposing the CCD during readout (avoiding e.g.
smearing) and/or attenuate the light source in finer steps than allowed by the neutral density filter
wheels.

>>> ogse.shutter_startloop(<ccd number to synchronise to>, <exposure time>)
>>> ogse.shutter_stoploop()

KU Leuven PLATO-KUL-PL-MAN-0004

112 | 16. Operating the OGSE

16.6. Power meter
The readings of the power meters are store in OGSE housekeeping telemetry.

If you need access to the power, read the housekeeping parameters GOGSE_PM_CH1_PWR (light
source monitor) or GOGSE_PM_CH2_PWR (light injected into the collimator)


CSL collimator power meter 2 will only provide readings between attenuation levels
2E-3 and 1.

16.7. OGSE housekeeping parameters

Parameter name Description Grafana
screen

type unit

GOGSE_LDLS_INTERLOCK Laser Driven Light Source
Power Interlock on

GOGSE_MON bool

GOGSE_LDLS_POWER Laser Driven Light Source
power on

GOGSE_MON bool

GOGSE_LDLS_LAMP Laser Driven Light Source
lamp on

GOGSE_MON bool

GOGSE_LDLS_LASER Laser Driven Light Source
laser on

GOGSE_MON bool

GOGSE_LDLS_LAMP_FAULT Laser Driven Light Source
lamp fault

GOGSE_MON bool

GOGSE_LDLS_CTRL_FAULT Laser Driven Light Source
controller fault

GOGSE_MON bool

GOGSE_LDLS_PSU Power Supply Unit on GOGSE_MON bool

GOGSE_LDLS_OPERATE Laser Driven Light Source
operate status on

GOGSE_MON bool

GOGSE_PM_CH1_PWR Power meter channel 1 power GOGSE_MON Uint16

GOGSE_PM_CH1_TEMP Power meter channel 1
temperature

GOGSE_MON Uint16 DegCelsius

GOGSE_PM_CH1_STATUS Power meter channel 1 on GOGSE_MON bool

GOGSE_PM_CH2_PWR Power meter channel 2 power GOGSE_MON Uint16

GOGSE_PM_CH2_TEMP Power meter channel 2
temperature

GOGSE_MON Uint16 DegCelsius

GOGSE_PM_CH2_STATUS Power meter channel 2 on GOGSE_MON bool

GOGSE_ATT_LVL Attenuation factor (0..1) GOGSE_MON Uint16

GOGSE_ATT_FWELL Attenuation factor
(approximate fraction of Full
well)

GOGSE_MON Uint16

PLATO-KUL-PL-MAN-0004 KU Leuven

16.6. Power meter | 113

17. Operating the tests, system states
We distinguish between two different entities, corresponding to different timescales for the tests:

• Test phase : consists in one or several days or uninterrupted tests, i.e. without switch off
(intentional or not).

• Test : the execution of a single test-script.

We also define the following “system states”:

• INITITALIZED: all subsystems in the test environment and test article (hereafter the ‘system’) are
switched on, set to predefined conditions and ready to accept commands.

◦ FEEs in “STANDBY” (CCDs powered).

◦ OGSE shutter closed

◦ No requirement on the OGSE filters (attenuation level unknown).

◦ AEU : switched on and syncing

◦ TCS: powered on, no task running, configured in remote operational mode, i.e. accepting
commands.

◦ MGSE mechanisms: controllers on, mechanisms homed if relevant, ready to accept commands

This is the initial state at the start of a test-phase.

• IDLE: All subsystems are in nominal conditions, as for INITIALIZED, but the FEEs are in
“DUMP_MODE” (full_image mode, nominal clocking, dump gate high), preventing the
accumulation of charges between tests.

This state is indeed aimed to serve an “inter-test-known-condition”.

• SAFE: as INITIALIZED, with the FEEs in “ON_MODE” (CCDs not powered)

• RUNNING: test running.

A standard test procedure will describe all steps to be followed at the start of a test phase, to bring the
system from “switched off” to INITIALIZED. It mainly consists in three blocks

• Power on all subsystems (manual hardware switch on)

• Switch on the EGSE components, launch the GUIs and commanding prompt (software switch on)

• Bring the system to the INITIALIZED state.

A dedicated commanding script is provided to operate this latter step:

>>> system_to_initialized()

You can test if the system is in this state with

KU Leuven PLATO-KUL-PL-MAN-0004

114 | 17. Operating the tests, system states

>>> system_test_if_initialized()

This function will abort if the system is not in INITIALIZED state, and do nothing otherwise.

As said above, by convention, every test script should be able to assume that the system is in IDLE
state before it starts, and it should return into that state before ending. A dedicated commanding
script is provided to this aim as well:

>>> system_to_idle()

Finally, it shall be possible at any moment to test if the system is in IDLE mode. The command
therefore is

>>> system_test_if_idle()

This function will abort if the system is not in IDLE state, and do nothing otherwise.

The test procedure should explicitly bring back the system to IDLE after every test, but whenever
possible, it is nevertheless recommended to start every test with a check via system_test_if_idle, and
call system_to_idle as a last command, to return the system to that known state.

PLATO-KUL-PL-MAN-0004 KU Leuven

17. Operating the tests, system states | 115

18. Appendices

Appendix A: Examples of CCD acquisition timing
sequence
Commanding: To keep notations light, the building blocks in the examples below are presented
directly at the python prompt, but in operations they will be refused outside of either another
function or building-block, or (if they by themselves constitute the entire test) an execute() command
(see Section 4.1).

Timing: In all cases, our time reference starts at the pulse triggering

a. the commanded configuration

b. the readout of CCD 1 (integrating previously, but readout under the new configuration)

In most cases, as long as the cycle-time and the ccd_order remain unchanged by the configuration
occurring at t = 0, the images read out during the first cycle can probably be used directly since, e.g.
the just commanded partial readout would be applied. This must be assessed on a case-by-case basis.
It will make a difference of one cycle wrt the first moment where a representative set of images
corresponding to the new configuration has been recorded. This explains why an apparently
redundant cycle is represented in all examples below.

18.A.1. 4 CCDs nominal cycle time, acquiring E & F sides simultaneously
(full-image or windowing mode)

Examples of building block parametrisation to achieve this:

>>> n_cam_full_standard(num_cycles=0, ccd_side=”BOTH”)
>>> n_cam_full_ccd (num_cycles=0, ccd_order=[1,2,3,4], ccd_side=”BOTH”, rows_overscan=0)

start readout CCD1: 0.00 long pulse, FEE config, start cycle 1, readout E & F-sides of previously ongoing exposures
start integr. CCD1: 4.00
start readout CCD2: 6.25 short pulse
start integr. CCD2: 10.25
start readout CCD3: 12.50 short pulse
start integr. CCD3: 16.50
start readout CCD4: 18.75 short pulse
start integr. CCD4: 22.75
start readout CCD1: 25.00 long pulse, start cycle 2, readout *E & F-sides*
start integr. CCD1: 29.00
start readout CCD2: 31.25
start integr. CCD2: 35.25
start readout CCD3: 37.50
start integr. CCD3: 41.50
start readout CCD4: 43.75
start integr. CCD4: 47.75
start readout CCD1: 50.00 long pulse, start cycle 3
start integr. CCD1: 54.00

KU Leuven PLATO-KUL-PL-MAN-0004

116 | 18. Appendices

18.A.2. Partial readout, external sync, single side (full-image mode)

>>> n_cam_partial_ccd (num_cycles=0, row_start=500, row_end=1000, rows_final_dump=4510, ccd_order=[1,1,1,1],
ccd_side=”E”)

For the same of simplicity, the timing below assumes the readout & clearout take exactly one second
in total.

start readout CCD1_E: 0.00 long pulse, FEE config, start cycle 1
start integr. CCD1: 1.00
start readout CCD1_E: 6.25 short pulse
start integr. CCD1: 7.25
start readout CCD1_E: 12.50 short pulse
start integr. CCD1: 13.50
start readout CCD1_E: 18.75 short pulse
start integr. CCD1: 19.75
start readout CCD1_E: 25.00 long pulse, FEE config, start cycle 2
start integr. CCD1: 26.00

18.A.3. Partial readout, internal sync, single side (full-image mode)

>>> n_cam_partial_ccd_int_sync (num_cycles=0, row_start=500, row_end=1000, rows_final_dump=4510,
ccd_order=[1,1,1,1], ccd_side=”E”, exposure_time=3)

For the same of simplicity, the timing below assumes the readout & clearout take exactly one second
in total. In fact they are estimated from row_start, row_end and rows_final_dump, and the cycle time
is then commanded to (readout_time + exposure_time)

start readout CCD1_E: 0.00 long pulse, FEE config, start cycle 1
start integr. CCD1_E: 1.00
start readout CCD1_E: 4.00 long pulse, start cycle 2
start integr. CCD1_E: 5.00
start readout CCD1_E: 8.00 long pulse, start cycle 3
start integr. CCD1_E: 9.00

Appendix B: Field of view representation with visited
positions in CSL
Starting a GUI on the operator screen showing the FOV:

$ visited_positions_ui

Then you can add the visited locations as follows:

• in focal-plane coordinates (x_fp, y_fp) [mm]:

>>> from egse.visitedpositions import visit_focal_plane_position +

PLATO-KUL-PL-MAN-0004 KU Leuven

Appendix B: Field of view representation with visited positions in CSL | 117

>>> visit_focal_plane_position(x_fp, y_fp)

• in CCD coordinates (row, column) [pixel] on a given CCD:

>>> from egse.visitedpositions import visit_ccd_position +
>>> visit_ccd_position(row, column, ccd_code)

• in field angles (theta, phi) [degrees]:

>>> from egse.visitedpositions import visit_field_angles +
>>> visit_field_angles(theta, phi)

At each of these locations, a red dot will appear on the plot. You can switch between coordinate
system (used in the plot) with the combobox below the plot window (focal-plane coordinates, pixel
coordinates, and field angles).

Figure 32. Visited positions gui. From the commanding script you can launch the gui visible to the
operator and add positions (red dots) to visualise the progress of a measurement.

Alternatively, you can fire up this GUI with

$ visited_positions_ui

and add the visited locations with the following commands:

• in focal-plane coordinates (x_fp, y_fp) [mm]:

KU Leuven PLATO-KUL-PL-MAN-0004

118 | 18. Appendices

>>> visit_focal_plane_position(x_fp, y_fp)

• in CCD coordinates (row, column) [pixel] on a given CCD:

>>> visit_ccd_position(row, column, ccd_code)

• in field angles (theta, phi) [degrees]:

>>> visit_field_angles(theta, phi)

These commands can be used in test scripts, to visualise visited positions, without having to pass on
the GUI object (or checking for its existence). In case the GUI has been fired up, the positions will be
marked in the GUI. If not, nothing will happen (no error will occur).

In camtest.commanding.csl_gse, there are a couple of building blocks to move the mechanisms (i.e.
hexapod and stages) such that the point sources falls on a specified position:

>>> point_source_to_fov(theta, phi)
>>> point_source_to_fp(x, y)

When executing these building blocks, a red dot will be added to the GUI, marking that position (in
case the GUI was fired up).

Appendix C: What should be started where?
On the EGSE server:

• The core services (Process Manager, Configuration Manager, Storage Manager, and Logging)
should be running at all times. Ideally the EGSE server is configured in a way that these services
will be re-started automatically in case they would go down.

• If you want to start the Control Servers for the devices on the command line: do it here (but
probably you’ll want to launch them from the PM UI (see below)).

• The FITS generator.

• The housekeeping generator for the N-FEE.

On the EGSE client:

• All GUIs should be started here (Process Manager UI, Configuration Manager UI, Setup UI, DPU UI,
FOV UI, etc.).

• You can start the Control Server for the devices from the PM UI. By doing so, these processes will
be started on the EGSE server.

• Executing scripts, commands,…

PLATO-KUL-PL-MAN-0004 KU Leuven

Appendix C: What should be started where? | 119

Appendix D: Generating FITS files off-line
It sometimes happens that the FITS files need to be re-processed off-line for some observations. This
can be done, based on the relevant HDF5 files that are stored in the daily folders for the OD(s) during
which the observation took place. Preferably, this is done on the EGSE server of the TH, with the
following command:

$ fitsgen for-obsid <obsid>

This will use the default data location from the PLATO_DATA_STORAGE_LOCATION environment variable. It
is possible to use a different data location, as follows:

$ fitsgen for-obsid <obsid> --location <full path to the data folder (in which obs and daily can be found)>

Note that it can be dangerous to run the off-line FITS generation on the client or server during testing,
as it could overload the Storage Manager. In case you would do this on a dedicated machine (with the
same commands), preferably over VNC (as some observation take a long time to be processed), you
need:

• a full installation of plato-common-egse (make sure to use a release);

• a checkout of plato-cgse-conf;

• a running Storage Manager;

• access to the data folder (with sub-folders /daily (in which the HDF5 files reside) and /obs (in
which the FITS files will be stored)) from the machine on which you will launch the FITS
generation.

Before you can go ahead, make sure that there are no FITS files in the folder for this observation
(remove them if there would be any)!

Appendix E: GitHub issues, NCR, and PVS
In this section we explain what the difference is between a GitHub issue, a non-conformance report
(NCR) and a procedure variation sheet (PVS). All three have their value and life cycle, but its
important to understand when and where they have to be used, and how they are tracked.

18.E.1. GitHub issues

A GitHub issue is a software issue that is raised in the GitHub repository of that part of the software.
Issues on the common software, device drivers, storage etc. should be raised on the plato-common-egse
repository, while issues with test scripts or, e.g., the Operator Task GUI shall be raised on the plato-
test-scripts repo. We have also the plato-cgse-conf repo which is used for the configuration and
calibration of the camera and test equipment, and where the Setups are stored/tracked. Finally, there
is the plato-cgse-doc repo which contains the documentation suite (of which you are reading one part
right now).

KU Leuven PLATO-KUL-PL-MAN-0004

120 | 18. Appendices

https://github.com/IvS-KULeuven/plato-common-egse
https://github.com/IvS-KULeuven/plato-test-scripts
https://github.com/IvS-KULeuven/plato-test-scripts
https://github.com/IvS-KULeuven/plato-cgse-conf
https://github.com/IvS-KULeuven/plato-cgse-doc

An issue doesn’t necessarily mean there is a problem or an error. GitHub issues can be raised for
various reasons: feature requests, software improvements, documentation update, bug, clarification
request, system crash, dependency problem, etc. Whenever you want to raise an issue, use the button
at the top of the GitHub repo page and fill in a clear title and a proper description. Some issues have a
template that help you provide all information that a developer would need to analyse and reproduce
the problem or to proceed with an implementation.

at the top-left of the repo Project page, click the
Issues button to navigate to the overview page of
open issues…

then at the top-right of the Issues page, click the
New issue button to create a new issue…

When you raise an issue, make sure you associate as many labels to it as applicable. Labels identify
the issue and provide a powerful way to filter and search issues. If an issue is urgent and needs to go
into a release, attach it to the milestone for that release.

Anyone who has access to the repository can inspect and create issues. If you encounter a problem,
contact the maintainer of the GitHub repos.

• Examples:

◦ a process doesn’t start: processes are all part of the CGSE and you will notify when their LED is
red in the process manager GUI. Try to investigate, but if you can not solve it, raise an issue in
plato-common-egse.

◦ an ERROR or Exception is raised in the console area of the operator Task GUI. Raise an issue in
the test scripts and copy the error message from the console area into the issue description. If
needed, the GitHub maintainer will migrate the issue to the CGSE repo.

◦ the test script is aborted: This can be due to incorrect input values, or a system component that
is not connected etc. Most of the time such an issue can be solved, but if the problem remains,
raise an issue on the test scripts.

◦ data is missing: This can be HK, metrics, FITS or CSV files, etc. This is usually a problem on the
CGSE since all data files are handled by the Storage component. Only reduction and analysis
scripts that are started from the Operator Task GUI generate intermediate results or PNGs.

GitHub issues is an issue tracking system, not a software configuration control system.

How is the software configuration tracked? Where is that described?

• milestones → CCB → releases

18.E.2. NCR

A NCR is a Non-Conformance Report and this type of report is used when there is a problem with
either the Camera or one of the GSE that are under the responsibility of an ESA contract. As a
consequence, NCRs are tracked and handled by ESA. An NCR can however be a result of an analysis on
an issue that was previously raised in GitHub. When that is the case, add a link to or the ID of the

PLATO-KUL-PL-MAN-0004 KU Leuven

Appendix E: GitHub issues, NCR, and PVS | 121

GitHub issue to the NCR description. You should also add the link to the NCR (or the ID) to the GitHub
issue.

The NCRs are tracked from the Eclipse system used at ESA. Select the PLATO – PA scope and then eNCTS:

This page is the starting point for creating and viewing all NCRs.

Examples

• the N-FEE reports errors on the SRAM Buffer Full continuously, we could not identify a cause in
the CGSE or site hardware/network setup.

• CCD 2 of FM2 is not working properly anymore after Camera vibration. (PLATO-CSL-PL-NCR-
0032)

• after a camera switch ON, we measure a background of 650 ADU instead of 1300 ADU (PLATO-
IAS-PL-NCR-0029)

18.E.3. PVS

A PVS is a Procedure Variation Sheet and is used to describe any changes or deviations from a test
procedure like TP-11 or TP-12. We make a distinction between changes in the procedure due to (1) an
error in the procedure, lacking or incomplete information and (2) a small deviation or command that
is used which is basically not part of the procedure. The former changes should actually go into a PVS
since they introduce a change in the procedure itself and need to be tracked in a proper way. The
latter change is usually done by red-lining the as-run copy of the procedure. This way, when the steps
that were executed are checked, it is clear some extra commands have been executed or some
commands have been skipped. That is not necessarily a permanent change in the procedure.

The PVS is a sheet, so where does this reside? Is the PVS attached to the procedure itself, to the as-run,
or is it a separate document?

KU Leuven PLATO-KUL-PL-MAN-0004

122 | 18. Appendices

https://sre-polaris.esa.int/eclipse/

	Ground Tests Commanding Manual
	Table of Contents
	Changelog
	Colophon
	Conventions used in this Book
	Purpose
	Documents and Acronyms
	Applicable documents
	Reference Documents
	Acronyms

	1. Introduction
	1.1. Contents
	1.2. EGSE commanding software environment
	1.3. How different user profiles use the software

	2. Software Overview
	2.1. The plato-common-egse GitHub repository
	2.2. The plato-test-scripts GitHub repository
	2.3. The plato-cgse-conf GitHub repo
	2.4. Software installation
	2.5. Naming Convention

	3. Test script architecture
	3.1. Overview
	3.2. Building block

	4. Test execution
	4.1. Test execution: execute
	4.2. Preview the command sequence
	4.3. Executing short building blocks individually

	5. Data acquisition and storage
	5.1. Housekeeping telemetry
	5.2. Observation
	5.3. Image data
	5.4. Telecommand history

	6. Configuration and Setups
	6.1. Example Setup file
	6.2. Available Setups
	6.3. Loading a Setup
	6.4. Inspecting, accessing, and modifying a Setup
	6.5. Saving a new setup

	7. Common-EGSE startup, shutdown, sleep
	7.1. EGSE States
	7.2. Core & Device Processes
	7.3. Process Manager GUI

	8. Utility functions
	8.1. Logging
	8.2. Handling Errors
	8.3. Coordinate transformations

	9. When a new camera arrives
	9.1. Setup
	9.2. Purpose
	9.3. Useful Information
	9.4. A new camera arrives at CSL
	9.5. A new camera arrives at the test houses
	9.6. Additional preparation steps
	9.7. Reference Information

	10. Switching ON/OFF the Camera
	10.1. Detailed description of Camera Switch ON
	10.2. Detailed description of Camera Switch OFF
	10.3. Analysis of the Short Function Test (SFT)

	11. Operating the AEU EGSE
	11.1. Introduction
	11.2. AEU switch on and off
	11.3. Changing between AEU EGSE operation modes
	11.4. Power supply Unit: Setting and checking Current and voltage protections
	11.5. FEE voltages and currents
	11.6. FEE voltage memories
	11.7. AEU powering up and down FEE
	11.8. AEU configuring synchronisation signals
	11.9. AEU self test
	11.10. AEU Telemetry parameters
	11.11. Functional summary

	12. Operating the N-FEE
	12.1. Glossary
	12.2. N-FEE operating modes
	12.3. Cycle, Timing and Synchronisation
	12.4. Commanding the N-FEEs
	12.5. Synchronization with CCD-readouts

	13. Operating the F-FEE
	13.1. Glossary
	13.2. F-FEE operating modes
	13.3. Cycle, Timing and Synchronisation
	13.4. Commanding the F-FEEs
	13.5. Synchronization with CCD-readouts

	14. Operating the TCS EGSE
	14.1. Switching between operating modes
	14.2. Remote Commanding
	14.3. The TCS Data Acquisition System —DAS
	14.4. Setting the temperature setpoints
	14.5. Enabling / disabling temperature control
	14.6. Temperature sensor configuration
	14.7. Changing temperature sensor calibration curves
	14.8. Changing PI control parameters
	14.9. Changing the PWM frequency

	15. Operating the TEB, shroud and MARI thermal control
	15.1. Context
	15.2. Checking and setting the temperature setpoints
	15.3. Starting / stopping the temperature control loop

	16. Operating the OGSE
	16.1. Switching entire OGSE on
	16.2. Switching entire OGSE off
	16.3. Attenuation with Neutral density filters
	16.4. Attenuation specifying the full well fraction
	16.5. Switching on/off light intensity stabilisation loop
	16.6. Power meter
	16.7. OGSE housekeeping parameters

	17. Operating the tests, system states
	18. Appendices
	Appendix A: Examples of CCD acquisition timing sequence
	Appendix B: Field of view representation with visited positions in CSL
	Appendix C: What should be started where?
	Appendix D: Generating FITS files off-line
	Appendix E: GitHub issues, NCR, and PVS

